Circular Pipe - MapleSim Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Circular Pipe

Lossy model of a circular pipe

 

Description

Equations

Variables

Connections

Parameters

Description

The Circular Pipe component models a circular pipe with losses. The pressure drop is computed with the Darcy equation, with the friction factor determined using the Haaland approximation for turbulent flow. When the Reynolds number is greater than the maximum value for laminar flow but less than the minimum value for turbulent flow, the friction factor is determined using linear interpolation.

Equations

Re=qDaνDh=4AUA=πD24

fL=64RefT=fColebrookReT,εDh

mode&equals;{posturbulentReT<RenegturbulentReT<ReposmixedReL<RenegmixedReL<Relaminarotherwise

p&equals;pApB&equals;12Lρν2Dh3Re{fColebrookRe&comma;εDhRemode&equals;posturbulentmode&equals;negturbulentfL&plus;fTfLReTReLReReLRemode&equals;posmixedmode&equals;negmixed64otherwise

q&equals;qA&equals;qB&equals;ReAνDh

fColebrook&equals;Re&comma;εD1.8log106.9Re&plus;εD3.71.11−2

Variables

Name

Units

Description

Modelica ID

A

m2

Pipe cross-sectional area

A

fL

 

Friction factor with laminar flow

fL

fT

 

Friction factor with turbulent flow

fT

mode

 

Integer indicating type of flow

mode

p

Pa

Pressure across component

p

q

m3s

Flow rate through component

q

Re

 

Reynolds number

Re

Connections

Name

Description

Modelica ID

portA

Upstream hydraulic port

portA

portB

Downstream hydraulic port

portB

Parameters

General Parameters

Name

Default

Units

Description

Modelica ID

D

0.01

m

Inner diameter

D

L

5

m

Length of pipe

L

ε

1.5·10−5

m

Height of inner surface roughness

epsilon

ReL

2·103

 

Reynolds number at transition to laminar flow

ReL

ReT

4·103

 

Reynolds number at transition to turbulent flow

ReT

See Also

Hydraulics Library

Restrictions