convert/0F1
convert to special functions admitting a 0F1 hypergeometric representation
Calling Sequence
Parameters
Description
Examples
convert(expr, `0F1`)
expr
-
Maple expression, equation, or a set or list of them
convert/0F1 converts, when possible, hypergeometric, MeijerG, and special functions admitting a 1F1 hypergeometric representation into special functions admitting a 0F1 hypergeometric representation; that is, into one of
FunctionAdvisor( `0F1` );
The 26 functions in the "0F1" class are particular cases of the hypergeometric function and are given by:
AiryAi,AiryBi,BesselI,BesselJ,BesselK,BesselY,HankelH1,HankelH2,KelvinBei,KelvinBer,KelvinHei,KelvinHer,KelvinKei,KelvinKer,cos,cosh,cot,coth,csc,csch,sec,sech,sin,sinh,tan,tanh
convert/0F1 accepts as optional arguments all those described in convert/to_special_function.
1Γ⁡1+a⁢za2a⁢WhittakerM⁡0,a,2⁢I⁢z2⁢I⁢z12+a
za⁢WhittakerM⁡0,a,2⁢I⁢zΓ⁡1+a⁢2a⁢2⁢I⁢z12+a
convert⁡,`0F1`
za⁢BesselI⁡a,I⁢zI⁢za
2−a−1⁢π⁢zasin⁡π⁢1+a⁢MeijerG⁡,,0,−a,−14⁢z2+2−1+a⁢πsin⁡π⁢a⁢z−a⁢MeijerG⁡,,0,a,−14⁢z2
2−a−1⁢π⁢za⁢MeijerG⁡,,0,−a,−z24sin⁡π⁢1+a+2−1+a⁢π⁢z−a⁢MeijerG⁡,,0,a,−z24sin⁡π⁢a
2−a−1⁢π⁢BesselI⁡a,z⁢2asin⁡π⁢1+a+2−1+a⁢π⁢z−a⁢BesselI⁡−a,z⁢zasin⁡π⁢a⁢2a
LaguerreL⁡−12−a,2⁢a,2⁢I⁢z−WhittakerM⁡0,a,2⁢I⁢z
2a⁢Γ⁡1+a⁢−12+a−12−a⁢ⅇI⁢z−2⁢I⁢z12+a⁢BesselI⁡a,I⁢zI⁢za
See Also
convert
convert/`1F1`
convert/`2F1`
convert/to_special_function
FunctionAdvisor
Download Help Document