convert/Whittaker
convert special functions admitting 1F1 or 0F1 hypergeometric representation into Whittaker functions
Calling Sequence
Parameters
Description
Examples
convert(expr, Whittaker)
expr
-
Maple expression, equation, or a set or list of them
convert/Whittaker converts, when possible, special functions admitting a 1F1 or 0F1 hypergeometric representation into Whittaker functions. The Whittaker functions are
FunctionAdvisor( Whittaker );
The 2 functions in the "Whittaker" class are:
WhittakerM,WhittakerW
AiryAi⁡z
convert⁡,Whittaker
3⁢WhittakerM⁡0,−13,4⁢z323⁢45612⁢Γ⁡23⁢z3216−3⁢z⁢Γ⁡23⁢WhittakerM⁡0,13,4⁢z323⁢4168⁢π⁢z3256
HermiteH⁡a,z⁢LaguerreL⁡2,exp⁡z
HermiteH⁡a,z⁢LaguerreL⁡2,ⅇz
convert⁡,Whittakerassuming0<ℜ⁡z
2a⁢π⁢ⅇz22⁢WhittakerM⁡a2+14,−14,z2z214⁢Γ⁡12−a2−2⁢z⁢WhittakerM⁡a2+14,14,z2z234⁢Γ⁡−a2⁢WhittakerM⁡52,0,WhittakerM⁡−1,12,z⁢ⅇz2z⁢ⅇWhittakerM⁡−1,12,z⁢ⅇz22⁢zWhittakerM⁡−1,12,z⁢ⅇz2z
exp⁡z⁢erf⁡z2+KummerU⁡−1,12,z⁢exp⁡12⁢z⁢MeijerG⁡1−a,,0,1−b,,1zBesselK⁡−3,1−z
ⅇz⁢erf⁡z2+KummerU⁡−1,12,z⁢ⅇz2⁢MeijerG⁡1−a,,0,1−b,,1zBesselK⁡3,1−z
2⁢WhittakerM⁡−1,12,z⁢ⅇz2⁢z⁢WhittakerM⁡14,14,−z4π⁢ⅇz42⁢−z434+2⁢WhittakerW⁡54,−14,z⁢ⅇz2⁢WhittakerM⁡−1,12,z2⁢ⅇz4z54⁢ⅇ12⁢z⁢Γ⁡a⁢Γ⁡1−b⁢WhittakerM⁡−a+b2,b2−12,1z+WhittakerM⁡−a+b2,12−b2,1z⁢Γ⁡1+a−b⁢Γ⁡−1+b⁢2−2⁢z1zb2⁢π⁢WhittakerW⁡0,3,2−2⁢z
See Also
convert
convert/to_special_function
FunctionAdvisor
Download Help Document