convert/radical
convert RootOf and trig functions to radicals and I
Calling Sequence
Parameters
Description
Examples
convert( expr, radical, n )
expr
-
expression
n
(optional) positive integer
The convert(expr, radical) calling sequence replaces RootOfs of polynomials by appropriate expressions in radical notation if possible.
The conversion can fail if Maple cannot find radical expressions for the roots or if the correct radical expression cannot be selected. If the conversion fails, the RootOf remains unchanged.
If a root of unity cannot be expressed in terms of radicals, it is converted to an equivalent expression involving sin and cos terms.
If the argument n is included, the n-th root with respect to the ordering used by solve is returned. Otherwise, the following rules are applied to choose the root.
Binomials
An indexed RootOf of the form RootOf(P(_Z), index=i), where P⁡_Z=A⁢_Zm+B for some integer m is replaced by (-B/A)^(1/m)*(-1)^(2*(i-1)/m). If no index is given, then i=1 is assumed and −BA1m is returned. In particular, RootOf(_Z^2+1) and RootOf(_Z^2+1, index=1) are transformed into I.
If the argument n is included, indexed RootOf can be converted to radical only if n equals the index i. Otherwise, an error is generated.
Other cases
Labeled RootOfs are converted by the same rules as unlabeled.
If a RootOf can be evaluated numerically by using evalf, then the radical expression with the closest numerical approximation is returned, which is the value of RootOf with index=1. If numerical evaluation fails, for example, if the RootOf has symbolic coefficients, then the cause is one of the following.
The RootOf has only one argument. That is, it has the form RootOf(P(_Z)). The first radical expression for the ordering used by the solve command is returned.
The RootOf is indexed. The conversion usually fails because Maple is unable to find a radical expression equal to the input RootOf for all values of the parameters.
To a limited extent, the RootOf notation can be restored by using convert/RootOf.
If the argument of a trigonometric function is of the form n⁢π120 where n is an integer, then Maple converts the function to radical form.
convert⁡RootOf⁡_Z3−2,index=1,radical
213
convert⁡RootOf⁡_Z3−2,index=2,radical
213⁢−123
convert⁡RootOf⁡_Z3−2,index=2,radical,2
−2132+I⁢3⁢2132
The following command produces an error.
convert⁡RootOf⁡_Z3−2,index=2,radical,3
Error, (in `convert/radical`) indexed RootOf can only be converted to the same root number
convert⁡RootOf⁡_Z3−2,1.2,radical
convert⁡RootOf⁡_Z2+1,index=2,radical
−I
convert⁡RootOf⁡_Z2+1,radical
I
convert⁡RootOf⁡_Z3+_Z+1,index=1,radical
108+12⁢931312−1108+12⁢9313−I⁢3⁢−108+12⁢93136−2108+12⁢93132
convert⁡RootOf⁡_Z3+_Z+1,radical
convert⁡RootOf⁡_Z3+_Z+x,radical
−108⁢x+12⁢81⁢x2+12136−2−108⁢x+12⁢81⁢x2+1213
In the following case, radical expressions exist, but viewed as functions of x none of them is equal to the RootOf.
convert⁡RootOf⁡_Z3+_Z+x,index=1,radical
RootOf⁡_Z3+_Z+x,index=1
In general, there is no radical expression for the roots of a degree 5 polynomial.
convert⁡RootOf⁡_Z5+_Z+3,index=1,radical
RootOf⁡_Z5+_Z+3,index=1
Trigonometric functions of a rational multiplied by Pi can, in some cases, be converted to radical form.
sin⁡π30
convert⁡,radical
2⁢3⁢5−58−18−58
convert⁡sec⁡524⁢π,radical
48+2⁢6−2⁢2
convert⁡cot⁡32320⁢π,radical
5−1⁢4+2⁢5−54
See Also
allvalues
convert/RootOf
evalf
radfield
radnormal
RootOf
solve
trig
type/radical
Download Help Document