rational polynomials - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


convert/ratpoly

convert series to a rational polynomial

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

convert(series, ratpoly, numdeg, dendeg)

Parameters

series

-

series; type laurent or a Chebyshev series

numdeg

-

(optional) integer; specify numerator degree

dendeg

-

(optional) integer; specify denominator degree

Description

• 

The convert/ratpoly function converts a series to a rational polynomial (rational function). If the first argument is a Taylor or Laurent series then the result is a Pade approximation, and if it is a Chebyshev series then the result is a Chebyshev-Pade approximation.

• 

The first argument must be either of type laurent (hence a Laurent series) or else a Chebyshev series (represented as a sum of products in terms of the basis functions Tk,x for integers k).

• 

If the third and fourth arguments appear, they must be integers specifying the desired degrees of numerator and denominator, respectively. (Note:  The actual degrees appearing in the approximant may be less than specified if there exists no approximant of the specified degrees). If the lowest degree v appearing in the series is negative, then the denominator of every rational approximation has degree at least v, and an error is raised if dendeg+v<0. If v&gt;numdeg0, the return value is 0.

• 

If the third and fourth arguments are not specified, then if v=0 the degrees of numerator and denominator are chosen to be m and n, respectively, such that m+n+1=orderseries and either m=n or m=n+1 (otherwise, if v&gt;0, then always mv, and if v<0, then nv and m+n+1+v=orderseries). The order of a Chebyshev series is defined to be d+1 where d is the highest-degree term which appears.

• 

For the Pade case, two different algorithms are implemented. For the pure univariate case where the coefficients contain no indeterminates and no floating-point numbers, a ``fast'' algorithm due to Cabay and Choi is used. Otherwise, an algorithm due to Geddes based on fraction-free symmetric Gaussian elimination is used.

• 

For the Chebyshev-Pade case, the method used is based on transforming the Chebyshev series to a power series with the same coefficients, computing a Pade approximation for the power series, and then converting back to the appropriate Chebyshev-Pade approximation.

Examples

sseriesexpx&comma;x

s1+x+12x2+16x3+124x4+1120x5+Ox6

(1)

converts&comma;ratpoly

1+35x+320x2+160x3125x+120x2

(2)

converts&comma;ratpoly&comma;2&comma;3

1+25x+120x2135x+320x2160x3

(3)

converts&comma;ratpoly&comma;3&comma;3

Error, (in `convert/ratpoly`) series order too small for specified degrees

tseriesexpxx4&comma;x&comma;7

tx4+x5+12x6+Ox7

(4)

convertt&comma;ratpoly&comma;3&comma;3

0

(5)

convertt&comma;ratpoly&comma;4&comma;2

x41x+12x2

(6)

Note that the degrees are not balanced in the following case.

convertt&comma;ratpoly

x41x+12x2

(7)

useriesexpxx3&comma;x

ux−3+x−2+12x−1+16+124x+1120x2+Ox3

(8)

convertu&comma;ratpoly&comma;2&comma;3

1+x+12x2x3

(9)

convertu&comma;ratpoly&comma;3&comma;2

Error, (in `convert/ratpoly`) no rational approximation with denominator degree <= 2

convertu&comma;ratpoly

1+45x+310x2+115x3+1120x415x4+x3

(10)

Digits5&colon;

numapproxchebyshevcosx&comma;x

0.76520T0&comma;x0.22981T2&comma;x+0.0049533T4&comma;x0.000041877T6&comma;x

(11)

convert&comma;ratpoly&comma;2&comma;2

0.76025T0&comma;x0.19673T2&comma;xT0&comma;x+0.043088T2&comma;x

(12)

References

  

Cabay, S., and Choi, D. K. "Algebraic Computations of Scaled Pade Fractions." SIAM J. Comput. Vol. 15(1), (Feb. 1986): 243-270.

  

Geddes, K. O. "Block Structure in the Chebyshev-Pade Table." SIAM J. Numer. Anal. Vol. 18(5), (Oct. 1981): 844-861.

  

Geddes, K. O. "Symbolic Computation of Pade Approximants." ACM Trans. Math. Software, Vol. 5(2), (June 1979): 218-233.

See Also

convert

convert/confrac

numapprox[pade]

series

type/laurent