dsolve
Find formal power series solutions to a linear ODE with polynomial coefficients
Calling Sequence
Parameters
Description
Examples
dsolve(ODE, y(x), 'formal_series', 'coeffs'=coeff_type)
dsolve(ODE, y(x), 'type=formal_series', 'coeffs'=coeff_type)
ODE
-
linear ordinary differential equation with polynomial coefficients
y(x)
the dependent variable (the indeterminate function)
'type=formal_series'
request for formal power series solutions
'coeffs'=coeff_type
coeff_type is one of 'polynomial', 'rational', 'hypergeom', 'mhypergeom'
When the input ODE is a linear ode with polynomial coefficients which is homogeneous or inhomogeneous with rational right hand side, and the optional arguments 'formal_series' (or 'type=formal_series') and 'coeffs'=coeff_type are given, dsolve will return a set of formal power series solutions with the specified coefficients at all candidate points of expansion. See Slode for more details.
Formal power series solution with polynomial coefficients
ode≔3⁢x2−6⁢x+3⁢diff⁡diff⁡y⁡x,x,x+12⁢x−12⁢diff⁡y⁡x,x+6⁢y⁡x
ode≔3⁢x2−6⁢x+3⁢ⅆ2ⅆx2y⁡x+12⁢x−12⁢ⅆⅆxy⁡x+6⁢y⁡x
dsolve⁡ode,y⁡x,formal_series,coeffs=polynomial
y⁡x=∑_n=0∞⁡_C2⁢_n+_C1⁢x_n
Formal power series solution with rational coefficients
ode≔3−x⁢diff⁡diff⁡y⁡x,x,x−diff⁡y⁡x,x
ode≔3−x⁢ⅆ2ⅆx2y⁡x−ⅆⅆxy⁡x
dsolve⁡ode,y⁡x,formal_series,coeffs=rational
y⁡x=_C2+_C1⁢∑_n=1∞⁡x−2_n_n
Formal power series solution with hypergeometric coefficients
ode≔2⁢x⁢x−1⁢diff⁡diff⁡y⁡x,x,x+7⁢x−3⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode≔2⁢x⁢x−1⁢ⅆ2ⅆx2y⁡x+7⁢x−3⁢ⅆⅆxy⁡x+2⁢y⁡x=0
dsolve⁡ode,y⁡x,type=formal_series,coeffs=hypergeom
y⁡x=_C1⁢∑_n=0∞⁡_n+1⁢x_n2⁢_n+1,y⁡x=_C1⁢∑_n=0∞⁡Γ⁡12+_n⁢x+1_n_n!π,y⁡x=_C1⁢∑_n=0∞⁡Γ⁡12+_n⁢−1_n⁢x−1_nΓ⁡_n+1π
Formal m-sparse m-hypergeometric power series solutions
ode≔diff⁡y⁡x,x,x+x−1⁢y⁡x
ode≔ⅆ2ⅆx2y⁡x+x−1⁢y⁡x
dsolve⁡ode,y⁡x,type=formal_series,coeffs=mhypergeom
y⁡x=_C1⁢Γ⁡23⁢∑_n=0∞⁡−19_n⁢x−13⁢_nΓ⁡_n+1⁢Γ⁡_n+23,y⁡x=2⁢_C1⁢π⁢3⁢∑_n=0∞⁡−19_n⁢x−13⁢_n+1Γ⁡_n+43⁢Γ⁡_n+19⁢Γ⁡23
See Also
dsolve,formal_solution
Slode
Download Help Document