dsolve/formal_solution
find formal solutions to a homogeneous linear ODE with polynomial coefficients
Calling Sequence
Parameters
Description
Examples
dsolve(ODE, y(x), 'formal_solution', 'coeffs'=coeff_type, 'point'=x0)
dsolve(ODE, y(x), 'type=formal_solution', 'coeffs'=coeff_type, 'point'=x0)
ODE
-
homogeneous linear ordinary differential equation with polynomial coefficients
y(x)
dependent variable (the indeterminate function)
'type=formal_solution'
(optional) request for formal solutions
'coeffs'=coeff_type
(optional) coeff_type is one of 'mhypergeom', 'dAlembertian'
'point'=x0
algebraic number, rational in parameters, or infinity
When the input ODE is a homogeneous linear ode with polynomial coefficients, and the optional arguments 'formal_solution' (or 'type=formal_solution') and 'coeffs'=coeff_type are given, the dsolve command returns a set of formal solutions with the specified coefficients at the given point (the default is at the origin). For more information, see Slode[mhypergeom_formal_sol] and Slode[dAlembertian_formal_sol].
Find the formal solution set with m-hypergeometric series coefficients.
ode≔x2+1⁢x⁢diff⁡y⁡x,x,x,x+3⁢2⁢x2+1⁢diff⁡y⁡x,x,x−12⁢y⁡x
ode≔x2+1⁢x⁢ⅆ3ⅆx3y⁡x+3⁢2⁢x2+1⁢ⅆ2ⅆx2y⁡x−12⁢y⁡x
dsolve⁡ode,y⁡x,formal_solution,coeffs=mhypergeom
y⁡x=2⁢x3+x⁢_C1+_C2⁢∑_n=1∞⁡Γ⁡_n−32⁢−1_n⁢x2⁢_nΓ⁡_n2⁢πx
Find the formal solution set with d'Alembertian series coefficient.
ode≔−4−x2+2⁢x⁢y⁡x+2⁢x−3⁢x3−x2⁢diff⁡y⁡x,x+x3−x4⁢diff⁡y⁡x,`$`⁡x,2
ode≔−x2+2⁢x−4⁢y⁡x+−3⁢x3−x2+2⁢x⁢ⅆⅆxy⁡x+−x4+x3⁢ⅆ2ⅆx2y⁡x
dsolve⁡ode,y⁡x,formal_solution,coeffs=dAlembertian
y⁡x=x2⁢−∑_n=0∞⁡x_n2+∑_n=0∞⁡∑_n1=0_n−1⁡−12_n1∏_k=0_n1−1⁡_k+2_k+32⁢x_n⁢_C1+ⅇ2x⁢∑_n=0∞⁡x_n−13⁢_C2x
ode≔−x−1⁢y⁡x−2⁢x2−4⁢x−1⁢diff⁡y⁡x,x−12⁢x⁢x+1⁢x−6⁢diff⁡y⁡x,`$`⁡x,2+12⁢2+x⁢x2⁢diff⁡y⁡x,`$`⁡x,3
ode≔−x−1⁢y⁡x−2⁢x2−4⁢x−1⁢ⅆⅆxy⁡x−x⁢x+1⁢x−6⁢ⅆ2ⅆx2y⁡x2+x+2⁢x2⁢ⅆ3ⅆx3y⁡x2
dsolve⁡ode,y⁡x,formal_solution,coeffs=dAlembertian,point=a
y⁡x=_C1⁢∑_n=0∞⁡−1a+2_n⁢x−a_n∏_k=0_n−1⁡_k+1_k+2+_C2⁢−a−2⁢∑_n=0∞⁡−1a+2_n⁢∑_n1=0_n−1⁡_n1+1⁢∏_k=0_n1−1⁡_k+1_k+22⁢a+2a_n1_n1+2⁢x−a_n∏_k=0_n−1⁡_k+1_k+2+3⁢a⁢a+2⁢∑_n=0∞⁡−1a+2_n⁢∑_n1=0_n−1⁡_n1+1⁢∏_k=0_n1−1⁡_k+1_k+22⁢a+2a_n1⁢∑_n2=0_n1−1⁡_n2+2⁢∏_k=0_n2−1⁡_k+2_k+3_n2+1_n1+2⁢x−a_n∏_k=0_n−1⁡_k+1_k+2−a2⁢a+2⁢∑_n=0∞⁡−1a+2_n⁢∑_n1=0_n−1⁡_n1+1⁢∏_k=0_n1−1⁡_k+1_k+22⁢a+2a_n1⁢∑_n2=0_n1−1⁡_n2+2⁢∏_k=0_n2−1⁡_k+2_k+3⁢∑_n3=0_n2−1⁡_n3+3⁢−a_n3_n3+1⁢∏_k=0_n3−1⁡_k+4⁢_k+1_k+3_n2+1_n1+2⁢x−a_n∏_k=0_n−1⁡_k+1_k+2⁢_C3
See Also
DEtools/formal_sol
dsolve
dsolve/formal_series
Slode/dAlembertian_formal_sol
Slode/mhypergeom_formal_sol
Download Help Document