integrating factors (linear) - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : dsolve : integrating factors (linear)

Solving Linear Ordinary Differential Equations (LODEs) by computing integrating factors for them

 

Description

Examples

Description

  

Integrating factors for second and higher order linear ODEs

• 

For linear ODEs (LODEs) of order 2 or greater, it is possible to calculate integrating factors by solving the adjoint of the LODE. This could be as difficult as the original problem, or much easier, depending on the example. This method is implemented in dsolve.

Examples

withDEtools,adjoint,firint,intfactor:

odediffyx,x,x=yxx+yxlnxx2+diffyx,xlnxx2lnxx2expxyxlnxx2

odeⅆ2ⅆx2yx=yxx+yxlnxx2+ⅆⅆxyxlnxx2ⅇxlnxx2yxlnxx2

(1)

This ODE has the following adjoint

adjointode,yx

ⅇxx1yxlnxx2+ⅇxⅆⅆxyx+ⅆ2ⅆx2yx

(2)

This adjoint equation is in turn solvable by dsolve

dsolve

yx=ⅇⅇxlnx2ⅆxc__1+c__2lnx

(3)

Now the solutions to the adjoint equation are integrating factors of the original LODE, so the two independent solutions implied in the general solution above

evalrhs,_C1=0,_C2=1

lnx

(4)

evalrhs,_C1=1,_C2=2

ⅇⅇxlnx2ⅆx+2lnx

(5)

are integrating factors of ode. These integrating factors could also be found using the intfactor directly

Μintfactorode

Μlnx,ⅇⅇxlnx2ⅆxlnx

(6)

Constructing solutions using integrating factors

How are these integrating factors transformed into a solution to the original problem? By using them to construct two first integrals; that is: two ODEs of lower order (in this case two first order ODEs). For that purpose it is provided the firint command which receives an exact ODE and returns a first integral. The idea is simple: an exact ODE is a total derivative - say dR/dx; firint returns the R + _C1:

firintΜ1ode

lnxx2ⅇx+xyxx2+lnxⅆⅆxyx+c__1=0

(7)

firintΜ2ode

ⅇⅇxlnx2ⅆxlnx2ⅇxx2+ⅇⅇxlnx2ⅆxlnxx+ⅇⅇxx2yxlnxx2+ⅇⅇxlnx2ⅆxlnxⅆⅆxyx+c__1=0

(8)

Eliminating y' from these two first integrals (and replacing _C1 by _C2 in one of them) leads to the solution f(x,y(x),_C1,_C2) = 0 to this ode. So this process could be run interactively, as shown, or in one step

dsolveode

yx=c__1ⅇⅇxlnx+c__2ⅇⅇxⅇⅇxlnx2ⅆxlnx

(9)

See Also

DEtools

dsolve,education

firint

firtest

intfactor

muchange

mutest

PDEtools

redode