Student[LinearAlgebra] Examples - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Applications and Example Worksheets : Algebra : Student[LinearAlgebra] Examples

 Student[LinearAlgebra] Examples

 

Eigenvalues and Eigenvectors

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Diagonalize a Matrix

Diagonalize A=11216 by finding and applying an appropriate transition matrix P.

Data entry

• 

Control-drag the matrix.
Context Panel: Assign to a Name≻A

11216assign to a nameA

Obtain the transition matrix P, whose columns are the eigenvectors of A 

• 

Write the name A.
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Eigenvalues, etc≻Eigenvectors

• 

Context Panel: Select Element≻2

• 

Context Panel: Assign to a Name≻P

A = −1−1216eigenvectors32,−3−411select entry 2−3−411assign to a nameP

Diagonalize A by applying P 

• 

Write the appropriate product of matrices.  Use dot (period) for matrix multiplication.
Context Panel: Evaluate and Display Inline

P1.A.P = 3002

Example 2: Singular Values of a Matrix

Obtain the singular values of A=11216, and verify the results from first principles

Data entry

• 

Control-drag the matrix.
Context Panel: Assign to a Name≻A

11216assign to a nameA

Obtain the singular values

• 

Write the name A.
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Eigenvalues, etc≻Singular Values

A = −1−1216singular values1942+170219421702

From first principles

• 

Enter the product of the transpose of A with A.
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Eigenvalues, etc≻Eigenvalues

• 

Context Panel: Assign to a Name≻V

A%T.A = 21818180eigenvalues91+8245918245assign to a nameV

• 

Expression palette: square-root operator
Apply to each component of the vector V, whose components are the eigenvalues of ATA

V1 = 1942+1702

V2 = 19421702

Example 3: Jordan Form

Obtain a transition matrix that puts A= 5544857117 into Jordan form.

Maple can return the required transition matrix. The calculations below proceed from first principles.

 

• 

Context Panel: Assign to a Name≻A

5544857117assign to a nameA

• 

Context Panel: Student Linear Algebra≻
Solvers and Forms≻Jordan Form

(Consequently, there is one chain of length 3 corresponding to the eigenvalue 2.)

5544857117Jordan form210021002

Obtain the null spaces of C=A2 I  and C2

• 

Context Panel: Assign to a Name≻C

 

(Note that Maple tolerates A2 as a short form of A2 I, where I is the identity matrix.)

A2 = 3−5−4−4657−11−9assign to a nameC

• 

Context Panel: Evaluate and Display Inline
Context Panel: Student Linear Algebra≻Vector Spaces≻Null Space

C = 3−5−4−4657−11−9null space12121

C2 = 1−1−1−1112−2−2null space101,110

Select a vector in ℝ3 that is not in the null space of C2 and verify this choice

• 

Context Panel: Assign to a Name≻b[3]

1,0,0assign to a nameb3

• 

Context Panel: Student Linear Algebra≻
Standard Operations≻Determinant

 

(Non-vanishing of the determinant shows b3 is not a member of the null space of C2)

111010100determinant−1

Construct the remaining members of the one chain of linearly independent generalized eigenvectors

• 

Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻b[2]

C.b3 = 3−47assign to a nameb2

• 

Context Panel: Evaluate and Display Inline
Context Panel: Assign to a Name≻b[1]

 

(Note that b1 is an eigenvector.)

C.b2 = 1−12assign to a nameb1

Construct the transition matrix whose columns are the vectors b1,b2,b3 

• 

Context Panel: Evaluate and Display inline

• 

Context Panel: Select Elements≻Combine into Matrix

• 

Context Panel: Assign to a Name≻Q 

b1,b2,b3 = 1−12,3−47,100combine into Matrix131−1−40270assign to a nameQ

Verify that Q puts A into Jordan form

• 

Context Panel: Evaluate and Display Inline

Q1.A.Q = 210021002

Solution of Linear Systems

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Solve a Completely Determined Linear System

Solve the completely determined system consisting of the equations

x+y+z=1,xy2 z=3,5 x+2 y7 z=9 

Simply solve the equations

• 

Control-drag the equations.
Context Panel: Solve≻Solve

x+y+z=1,xy2 z=3,5 x+2 y7 z=9solvex=2915,y=45,z=215

Convert to a linear system

• 

Control-drag the equations.

• 

Context Panel: Student Linear Algebra≻
Constructions≻Generate Matrix≻Augmented
(Complete dialog as per Figure 1.)

• 

Context Panel: Student Linear Algebra≻
Solvers and Forms≻Linear Solve

Figure 1

x+y+z=1,xy2 z=3,5 x+2 y7 z=9to Matrix form11111−1−2352−79linear solve291545215

Example 2: Least-Squares Solution of an Overdetermined System

Obtain a least-squares solution to the overdetermined system consisting of the equations

x+y+z=1,xy2 z=3,5 x+2 y7 z=9,3 x7 y+9 z=4 

• 

Control-drag the equations and press the Enter key.

• 

Context Panel: Student Linear Algebra≻Constructions≻Generate Matrix≻Matrix-Vector pair
(Complete dialog as per Figure 1, in Example 1.)

• 

Context Panel: Student Linear Algebra≻Solvers and Forms≻Least Squares

x+y+z=1,xy2 z=3,5 x+2 y7 z=9,3 x7 y+9 z=4

x+y+z=1,xy2z=3,5x+2y7z=9,3x7y+9z=−4

to Matrix form

1111−1−252−73−79,139−4

least squares

1020711574931286777711574

Example 3: Minimum-Norm Least-Squares

Obtain the minimum-norm least-squares solution of the system 7051015191081114691x=1234.

Obtain the minimum-norm least-squares solution

• 

Control-drag the system, editing it to a sequence of matrix and vector.

• 

Context Panel: Student Linear Algebra≻Solvers and Forms≻Least Squares
Check the "Optimized" box in the "Specify options for Least Squares" dialog

7051015191081114691,1234least squares10341751105434375552698175110184737555

Work from first principles: obtain the general solution and minimize its norm:

Obtain the general solution

• 

Control-drag the system, editing it to a sequence of matrix and vector.

• 

Context Panel: Student Linear Algebra≻Solvers and Forms≻Least Squares
Free-Variable Name≻s 

• 

Context Panel: Evaluate at a Point≻s

• 

Context Panel: Assign to a Name≻X

7051015191081114691,1234least squaress13s1+1395187s15+357464757s15+313312950evaluate at points3s+1395187s5+357464757s5+313312950assign to a nameX

Obtain the norm and minimize it

• 

Write the name X and press the Enter key.

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Norm≻Euclidean

• 

Context Panel: Differentiate≻With Respect To≻s

• 

Context Panel: Conversions≻Equate to 0 (This step is optional.)

• 

Context Panel: Solve≻Solve

• 

Context Panel: Assign to a Name≻S 

X

s3s+1395187s5+357464757s5+313312950

Euclidean-norm

2334418800s2+642796560s+7298521812950

differentiate w.r.t. s

4668837600s+642796560259002334418800s2+642796560s+72985218

equate to 0

4668837600s+642796560259002334418800s2+642796560s+72985218=0

solve

s=1034175110

assign to a name

S

• 

Expression palette: Evaluation template
Evaluate X at the solution in S

 

• 

Context Panel: Evaluate and Display Inline

 

Xx=a|f(x)S = 10341751105434375552698175110184737555

Example 4: Stepwise Row Reduction and Back-Substitution

If the linear system Ax=y is expressed by the augmented matrix 562343311102, row-reduce to upper triangular form and solve for x.

• 

Control-drag the matrix.
Context Panel: Student Linear Algebra≻
Standard Operations≻Row-Reduced Form

 

• 

Context Panel: Select Elements≻Restrict Columns
(Complete dialog as per Figure 2. The return is then a vector and not a one-column matrix.)

Figure 2

 562343311102row-reduced form100594701035470012847restrict columns594735472847

Stepwise row reduction can be done via the Context Panel system, as per Figure 3.

 

Figure 3   Elementary row operations via the Context Panel system

The elementary row operations are also available in two tutors that can be accessed from the Context Panel (Student Linear Algebra > Tutors) . These are the Gaussian Elimination and Gauss-Jordan Elimination tutors..

Matrix Factorizations

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: LU Decomposition

Obtain the LU decomposition of the matrix 165224526.

• 

Control-drag the given matrix.
Context Panel: Student Linear Algebra≻Solvers and Forms≻LU Decomposition

 165224526LU decomposition100010001,100−2105−21,1650141400−3

The returned matrices are P,L,U, with P being the matrix that tracks permutations of the rows; L being the unit lower triangular factor; and U being the upper triangular factor. By default, Maple returns the Doolittle, not the Crout, factorization.

 

Example 2: QR Decomposition

Obtain the QR decomposition of the matrix 165224526.

• 

Control-drag the given matrix.
Context Panel: Student Linear Algebra≻Solvers and Forms≻QR Decomposition

165224526QR decomposition30302556630155563306066,3023051130100145514550062

Example 3: Singular-Value Decomposition

Obtain the singular-value decomposition of the matrix 165224526.

• 

Control-drag the given matrix.
Context Panel: Student Linear Algebra≻Solvers and Forms≻Singular Value Decomposition≻Singular Value Decomposition (U,S,Vt)

165224526singular value decomposition (U,S,Vt)0.5988918686−0.7180631732−0.35456142980.4864104839−0.025556623020.8733565706−0.6361865833−0.69550854560.3339678021,10.008749777.1046510340.5906452392,−0.35517543160.32909195430.8749565122−0.5833492223−0.80940067990.06763300640−0.73044787460.4863836187−0.4794547714

The return consists of the factor U, the vector of singular values, and the transpose of the factor V. If S is a diagonal matrix whose diagonal elements are the singular values, then A=U S VT.

 

Queries

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Positive Definite Matrix

Is the symmetric matrix 741453136 positive definite?

• 

Control-drag the given matrix.
Context Panel: Student Linear Algebra≻Queries≻
Is Definite?≻Positive Definite?

741453136is positive definite?true

Typically, definiteness is assigned to bilinear forms xTAx derived from the symmetric matrix A. If A is not symmetric, the associated bilinear form can be represented by xTBx, where B=A+AT/2, the "symmetric part of A" is symmetric. Hence, Maple assigns definiteness to the symmetric part of a nonsymmetric matrix on the grounds that the matrix represents a bilinear form.

Example 2: Similar Matrices

Show that the matrices A=522341428 and B=1515302334111433219159311427 are similar by finding a  matrix C for which C A=B C.

• 

Write the sequence of matrices A and B
Context Panel: Student Linear Algebra≻Queries≻Similar?

• 

Context Panel: Select Element≻2

• 

Context Panel: Assign to a Name≻C

522341428,1515302334111433219159311427is similar?true,10048658152211153352211110713480743167305221119852211130011044222select entry 210048658152211153352211110713480743167305221119852211130011044222assign to a nameC

Data entry

• 

Control-drag each matrix.
Context Panel: Assign to a Name≻A (or B, as appropriate)

522341428assign to a nameA

1515302334111433219159311427assign to a nameB

Test for similarity and find C 

• 

Write a sequence of the names A and B, then press the Enter key.

• 

Context Panel: Student Linear Algebra≻Queries≻Is Similar?

• 

Context Panel: Select Element≻2

• 

Context Panel: Assign to a Name≻C 

A,B

−5−2−234−14−2−8,−15−1530−23341114332191−5−931−1427

is similar?

true,10048658152211153352211110713480743167305221119852211130011044222

select entry 2

10048658152211153352211110713480743167305221119852211130011044222

assign to a name

C

Verify similarity

• 

Context Panel: Evaluate and Display Inline

C.A = −5−2−224280785221113261691740379854815221111577354522111212023174037645562522111

B.C = −5−2−224280785221113261691740379854815221111577354522111212023174037645562522111

Example 3: Orthogonal Matrix

Construct a (nontrivial) 3×3 orthogonal matrix.

• 

Enter a list of three linearly independent vectors and press the Enter key.

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Gram-Schmidt≻normalized

• 

Context Panel: Select Elements≻Combine into Matrix

• 

Context Panel: Assign to a Name≻Q 

4,1,6,5,3,1,7,8,9

−416,531,7−89

Gram-Schmidt (normalized)

45353535365353,1331831853181597318318,666366

combine into Matrix

453531331831866535353181596365353731831866

assign to a name

Q

Verify that Q is an orthogonal matrix

• 

Write the name Q
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Queries≻Orthogonal?

Q = 453531331831866535353181596365353731831866is orthogonal?true

An alternative verification consists in showing that QTQ=QQT=I, thereby confirming that the rows (and columns) of Q are sets of orthonormal vectors.

 

Q%T.Q = 100010001

Q.Q%T = 100010001

Vector Spaces

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Four Fundamental Subspaces of a 5×3

Find the row space, column space, null space, and null space of the transpose for the matrix

 

 328440105328482172189 

 

(Gilbert Strang of MIT calls these the four fundamental subspaces of A.)

The 5×3 matrix A maps ℝ3 to ℝ5. Maple provides bases for each of the four fundamental subspaces.

The row and null spaces of A are orthogonal subspaces of ℝ3; the column space of A and the null space of AT are orthogonal subspaces in ℝ5. Figure 4 illustrates the relationships between these four subspaces.

 

Figure 4   The four fundamental subspaces of A

Data entry

• 

Control-drag (or copy/paste) the given matrix.
Context Panel: Assign to a Name≻A 

 328440105328482172189assign to a nameA

Row space of A

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Row Space

A = 32−8−4−40105−32848−2−172−18−9row space11418

Column space of A 

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Column Space

A = 32−8−4−40105−32848−2−172−18−9column space154−11494

Null space of A 

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Null Space

A = 32−8−4−40105−32848−2−172−18−9null space1801,1410

Null space of AT 

• 

Write the notation for the transpose of A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Null Space

A%T = 32−40−32872−8108−2−18−454−1−9null space940001,140010,10100,541000

Example 2: Four Fundamental Subspaces of a 4×5

Find the row space, column space, null space, and null space of the transpose for the matrix

 

5042620208137372447432926252131010

 

(Gilbert Strang of MIT calls these the four fundamental subspaces of A.)

The 4×5 matrix A maps ℝ5 to ℝ4. Maple provides bases for each of the four fundamental subspaces.

The row and null spaces of A are orthogonal subspaces of ℝ5; the column space of A and the null space of AT are orthogonal subspaces in ℝ4. Figure 5 illustrates the relationships between these four subspaces.

 

Figure 5   The four fundamental subspaces of A

 

Data entry

• 

Control-drag (or copy/paste) the given matrix.
Context Panel: Assign to a Name≻A 

5042620208137372447432926252131010assign to a nameA

Row space of A

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Row Space

A = 5042−6−2020−8−1−3737−244743−2926−25−21310−10row space10601159113811,01731165114011

Column space of A 

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Column Space

A = 5042−6−2020−8−1−3737−244743−2926−25−21310−10column space10272612,018130

Null space of A 

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Null Space

A = 5042−6−2020−8−1−3737−244743−2926−25−21310−10null space38114011001,59116511010,60117311100

Null space of AT 

• 

Write the notation for the transpose of A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Null Space

A%T = 50−847−2542−143−21−6−37−293−203721020−246−10null space12001,272681310

Special Matrices

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Inverse by Adjoint

Divide the adjoint of A=921541462 by the determinant of A, and show that the resulting matrix is A1, the multiplicative inverse of A.

Data entry

• 

Control-drag the matrix A.
Context Panel: Assign to a Name≻A

921541462assign to a nameA

Obtain the determinant of A

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻
Standard Operations≻Determinant

A = 921−5−4146−2determinant−8

Obtain the adjoint of A

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Adjoint

• 

Context Panel: Assign to a Name≻adjA

A = 921−5−4146−2adjoint2106−6−22−14−14−46−26assign to a nameadjA

Divide the adjoint by the determinant

• 

Context Panel: Evaluate and Display Inline

adjA8 = 145434341147474234134

Obtain A1, the multiplicative inverse of A 

• 

Write the name A
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻
Standard Operations≻Inverse

A = 921−5−4146−2inverse145434341147474234134

Example 2: Reflection Matrix (across a Line)

Obtain a matrix that reflects vectors in ℝ2 across the line y=x/3.

• 

The red dashed line line in Figure 6 is the graph of y=x/3. The green vector, 3 i+j, is along this line.

 

• 

The gold vector, i+3 j, is orthogonal to the line y=x/3.

 

• 

The black vector, 2 i+2 j, is an arbitrary vector in ℝ2. Its reflection across the line y=x/3 is the red vector.

 

• 

The reflection matrix is constructed from the gold vector, that is, from a vector orthogonal to the "mirror" across which reflection is to take place.

Figure 6 

Construct the rotation matrix

• 

On a vector orthogonal to the line of reflection:
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Constructions≻Reflection Matrix

• 

Context Panel: Assign to a Name≻R 

1,3 = −13reflection matrix45353545assign to a nameR

Test the rotation matrix

• 

Write sequences of two vectors (black & green, red & green, in Figure 6); press the Enter key.

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Vector Angle

2,2,3,1

22,31

angle between

arccos2105

R.2,2,3,1

14525,31

angle between

arccos2105

Example 3: Reflection Matrix (across a Plane)

Obtain a matrix that reflects vectors in ℝ3 across the plane x+2 y+3 z=0.

• 

Figure 7 shows the plane across which reflections are to take place. In addition, N, the black vector in the figure, is a normal to the plane.

 

• 

The red vector, V=i+j+k, is an arbitrary vector in ℝ3.

 

• 

The green vector is RV, the reflection of V across the given plane, where R is the requisite reflection matrix.

• 

The angles between V and N and RV and -N should be equal if RV is the reflection of V across the plane.

use plots, Student:-VectorCalculus, Student:-LinearAlgebra in
module()
local p1,p2,p3,R,N,V;
N:=<1,2,3>/2;
V:=<1,1,1>;
R:=ReflectionMatrix(N);
p1:=implicitplot3d(x+2*y+2*z=0,x=-1..1,y=-1..1,z=-2..2,style=wireframe);
p2:=PlotVector([N,V,R.V],color=[black,red,green],width=.2);
p3:=display(p1,p2,scaling=constrained,labels=[x,y,z],axes=frame,orientation=[-5,80,0],tickmarks=[3,4,6],lightmodel=none);
print(p3);
end module:
end use:

 

Figure 7

Construct the rotation matrix

• 

On a vector orthogonal to the plane:
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Constructions≻Reflection Matrix

• 

Context Panel: Assign to a Name≻R 

1&comma;2&comma;3 = 123reflection matrix672737273767376727assign to a nameR

Test the rotation matrix

• 

Write sequences of two vectors (V and N, RV and -N, in Figure 7); press the Enter key.

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Vector Angle

1&comma;1&comma;1&comma;1&comma;2&comma;3

111,123

angle between

arccos3147

R&period;1&comma;1&comma;1&comma;1&comma;2&comma;3

1757117,−1−2−3

angle between

arccos3147

Example 4: Rotation Matrix

Rotate the vector V&equals;ij&plus;2 k through an angle of &pi;&sol;6 radians about the line x&equals;t&comma;y&equals;2 t&comma;z&equals;3 t.

• 

In Figure 8, the black vector, i&plus;2 j&plus;3 k, is along the axis of rotation, shown as the dashed red line.

 

• 

In Figure 8, the red vector is V&equals;ij&plus;2 k; its &pi;&sol;6 rotation about the axis of rotation, is the green vector.

use plots, Student:-VectorCalculus, Student:-LinearAlgebra in
module()
local p1,p2,p3,V,N,R;
R:=RotationMatrix(Pi/6,<1,2,3>);
V:=<1,-1,2>;
N:=<1,2,3>;
p1:=spacecurve([t,2*t,3*t],t=-1/5..1.2,color=red,linestyle=dash);
p2:=PlotVector([V,R.V,N],color=[red,green,black],width=.2);
p3:=display(p1,p2,scaling=constrained,labels=[x,y,z],tickmarks=[3,3,5],orientation=[-65,85,0]);
print(p3);
end module:
end use:

 

Figure 8

Construct the requisite rotation matrix

• 

Write a sequence of the rotation angle and a vector along the axis of rotation; press the Enter key.

• 

Context Panel: Student Linear Algebra≻Constructions≻Rotation Matrix

&pi;&sol;6&comma;1&comma;2&comma;3

π6,123

rotation matrix

13328+11431431428+173328+1414+314314+31428+175314+2733141428+3733281414+3143314+1428+375328+914

Matrix Operators

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Matrix Norm Subordinate to Vector Norm

Obtain the Euclidean norm of the matrix A&equals;1231 and show that it is the maximum value of the Euclidean norm of the vector Av, where v is a unit vector.

Obtain the Euclidean norm of A

• 

Control-drag the matrix A
Context Panel: Student Linear Algebra≻Standard Operations≻Norm≻Euclidean

• 

Context Panel: Simplify≻Simplify

1231Euclidean-norm152+292&equals; simplify 292+12

Obtain the norm of Ax, where x is a unit vector

• 

Write A times a unit vector and press the Enter key.

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Norm≻Euclidean

• 

Context Panel: Simplify≻Simplify

• 

Context Panel: Assign to a Name≻f 

1231&period;x&comma;1x2

x+2x2+13xx2+1

Euclidean-norm

x+2x2+12+3xx2+12

&equals; simplify

5x2+52xx2+1

assign to a name

f

Maximize the norm of Ax 

• 

Write f and press the Enter key.

• 

Context Panel: Differentiate≻With Respect To≻x

• 

Context Panel: Conversions≻Equate to 0 (This step is optional.)

• 

Context Panel: Solve≻Solve

• 

Context Panel: Assign to a Name≻S

f

5x2+52xx2+1

differentiate w.r.t. x

10x2x2+1+2x2x2+125x2+52xx2+1

equate to 0

10x2x2+1+2x2x2+125x2+52xx2+1=0

solve

x=16822902958,x=1682+2902958

assign to a name

S

Evaluate f&equals;Ax at each critical value of x 

• 

Expression palette: Evaluation template
Evaluate at each of the two critical values.

• 

Context Panel: Evaluate and Display Inline

• 

Context Panel: Simplify≻Simplify

fx&equals;a|f(x)S1 = 15225295816822902912+5295829&equals; simplify 12+292

fx&equals;a|f(x)S2 = 152+252958+1682+29029125295829&equals; simplify 292+12

Example 2: Matrix Norm and Singular Values

Show that the Euclidean norm of the matrix A&equals;1231 is the largest singular value of A, and the square root of the largest eigenvalue of ATA.

From Example 1:

Obtain the Euclidean norm of A

• 

Control-drag the matrix A
Context Panel: Student Linear Algebra≻Standard Operations≻Norm≻Euclidean

• 

Context Panel: Simplify≻Simplify

1231Euclidean-norm152+292&equals; simplify 292+12

 

Obtain the singular values of A

• 

Control-drag the matrix A
Context Panel: Student Linear Algebra≻
Eigenvalues, etc≻Singular Values

1231singular values292+1212+292

Obtain the eigenvalues of ATA 

• 

Write the product AT&period;A.
Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Eigenvalues, etc≻Eigenvalues

1231%T&period;1231 = 10−1−15eigenvalues152+292152292

• 

Control-drag the larger of the two eigenvalues.

• 

Select, and click a in the Expression palette

• 

Context Panel: Evaluate and Display Inline

152&plus;1229 = 292+12

Vectors and Vector Operators

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Vector Angle, Dot and Cross Products

Determine the angle between the vectors u&equals;i&plus;2 j&plus;3 k and v&equals;3 i7 j&plus;5 k, then obtain their dot and cross products.

Data entry

• 

Context Panel: Assign to a Name≻u and v, as appropriate

1&comma;2&comma;3assign to a nameu

3&comma;7&comma;5assign to a namev

Determine the angle between u and v

• 

Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Vector Angle

u&comma;v = 123,3−75angle betweenarccos21483581

Dot product

Cross product

• 

Common Symbols palette: Dot product operator

• 

Context Panel: Evaluate and Display Inline

Common Symbols palette: Cross product operator

Context Panel: Evaluate and Display Inline

u·v = 4

u×v = 314−13

• 

Context Panel: Evaluate and Display Inline

• 

Context Panel: Student Linear Algebra≻Standard Operations≻Dot Product (or Cross Product)

u&comma;v = 123,3−75dot product4

u&comma;v = 123,3−75cross product314−13

Example 2: Orthonormalization

Orthonormalize the columns of the matrix A&equals;849643391, then form Q, a matrix with these orthonormalized vectors, and show that Q is an orthogonal matrix.

• 

Control-drag the matrix A and press the Enter key.

• 

Context Panel: Select Elements≻Split into Columns

• 

Context Panel: Student Linear Algebra≻Vector Spaces≻Gram-Schmidt≻normalized

• 

Context Panel: Assign to a Name≻Q 

849643391

−8−49−6433−91

split into columns

−8−63&comma;−44−9&comma;931

Gram-Schmidt (normalized)

810910961091093109109&comma;426649664923664966496666496649&comma;361616616146161

combine into Matrix

810910942664966493616161091092366496649661613109109666649664946161

assign to a name

Q

Verify that Q is an orthogonal matrix

• 

Context Panel: Evaluate and Display Inline

Q%T&period;Q = 100010001

Q&period;Q%T = 100010001

Visualizing a Linear Transform

• 

Tools≻Load Package: Student Linear Algebra

Loading Student:-LinearAlgebra

Example 1: Linear Transform Induced by a 2×2 Matrix

Visualize the effect of applying to unit vectors, the linear transformation determined by the matrix A&equals;1234.

Access the Linear Transform Plot tutor through the Context Panel applied to the matrix A. The result is Figure 9.

 

Context Panel: Student Linear Algebra≻Tutors≻Linear Transform Plot

Figure 9

Return to Index for Example Worksheets