Knots - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Examples of Knots 

The following example worksheet shows various examples of knots visualized using the plots:-tubeplot and algcurves:-plot_knot commands. 

Unknot 

The unknot can be defined by the following parametric equations: 

x = sin(t);  

y = cos(t);  

z = 0;  

> plots:-tubeplot([cos(t),sin(t),0,t=0..2*Pi],
  radius=0.2,axes=none,color="Blue",orientation=[60,60],scaling=constrained,style=surfacecontour);
 

Image
 

The Trefoil Knot 

The trefoil knot can be defined by the following parametric equations: 

x = `+`(sin(t), `*`(2, `*`(sin(`+`(`*`(2, `*`(t)))))));  

y = `+`(cos(t), `*`(2, `*`(sin(`+`(`*`(2, `*`(t)))))));  

z = sin(`+`(`*`(3, `*`(t))));  

> plots:-tubeplot([sin(t)+2*sin(2*t),cos(t)-2*cos(2*t),-sin(3*t),t= 0..2*Pi],
  radius=0.2,axes=none,color="Green",orientation=[90,0],style=surface);
 

Image
 

The Figure-Eight Knot 

The figure-eight can be defined by the following parametric equations: 

x = `*`(`+`(2, cos(`+`(`*`(2, `*`(t))))), `*`(cos(`+`(`*`(3, `*`(t))))));  

y = `*`(`+`(2, cos(`+`(`*`(2, `*`(t))))), `*`(sin(`+`(`*`(3, `*`(t))))));  

z = sin(`+`(`*`(4, `*`(t))));  

> plots:-tubeplot([(2+cos(2*t))*cos(3*t),(2+cos(2*t))*sin(3*t),sin(4*t),t=0..2*Pi],
  numpoints=100,radius=0.1,axes=none,color="Red",orientation=[75,30,0],style=surface);
 

Image
 

The Lissajous Knot 

The Lissajous knot can be defined by the following parametric equations: 

x = cos(`+`(`*`(t, `*`(n[x])), phi[x]));  

y = cos(`+`(`*`(t, `*`(n[y])), phi[y]));  

z = cos(`+`(`*`(t, `*`(n[z])), phi[z]));  

Where n[x]; , n[y]; , and n[z]; are integers and the phase shifts phi[x]; , phi[y]; , and phi[z]; are any real numbers. 

The 8 21 knot (n[x] = 3; , n[y] = 4; , and n[z] = 7; ) appears as follows: 

> plots:-tubeplot([cos(3*t+Pi/2),cos(4*t+Pi/2),cos(7*t),t=0..2*Pi],
  radius=0.05,axes=none,color="Brown",orientation=[90,0,0],style=surface);
 

Image
 

Star Knot 

A star knot can be defined by using the following polynomial: 

> f := -x^5+y^2;
 

f := `+`(`-`(`*`(`^`(x, 5))), `*`(`^`(y, 2))) (1)
 

> algcurves:-plot_knot(f,x,y,epsilon=0.7,
  radius=0.25,tubepoints=10,axes=none,color="Orange",orientation=[60,0],style=surfacecontour);
 

Image
 

Two different projections of the same polynomial 

By switching x and y, different visualizations can be generated: 

> g:=(y^3-x^7)*(y^2-x^5)+y^3;
 

g := `+`(`*`(`+`(`-`(`*`(`^`(x, 7))), `*`(`^`(y, 3))), `*`(`+`(`-`(`*`(`^`(x, 5))), `*`(`^`(y, 2))))), `*`(`^`(y, 3))) (2)
 

> plots:-display(<
algcurves:-plot_knot(g,y,x,epsilon=0.8,radius=0.1,axes=none,color="CornflowerBlue",orientation=[75,30,0])|
algcurves:-plot_knot(g,x,y,epsilon=0.8,radius=0.1,axes=none,color="OrangeRed",orientation=[75,0,0])>);
 


Image Image


 

More examples 

> f:=(y^3-x^7)*(y^2-x^5);
 

f := `*`(`+`(`-`(`*`(`^`(x, 7))), `*`(`^`(y, 3))), `*`(`+`(`-`(`*`(`^`(x, 5))), `*`(`^`(y, 2))))) (3)
 

> algcurves:-plot_knot(f,x,y,
 epsilon=0.8,radius=0.1,axes=none,orientation=[35,0,0]);
 

Image
 

> h:=(y^3-x^7)*(y^3-x^7+100*x^13)*(y^3-x^7-100*x^13);
 

h := `*`(`+`(`-`(`*`(`^`(x, 7))), `*`(`^`(y, 3))), `*`(`+`(`*`(100, `*`(`^`(x, 13))), `-`(`*`(`^`(x, 7))), `*`(`^`(y, 3))), `*`(`+`(`-`(`*`(100, `*`(`^`(x, 13)))), `-`(`*`(`^`(x, 7))), `*`(`^`(y, 3)))... (4)
 

> algcurves:-plot_knot(h,x,y,
  epsilon=0.8,numpoints=400,radius=0.03,axes=none,color=["Blue","Red","Green"],orientation=[60,0,0]);
 

Image
 

Return to Index for Example Worksheets 

See Also 

algcurves:-plot_knot, examples/algcurves, plots:-tubeplot