TriakisTetrahedon - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Reciprocal Polyhedra of the Thirteen Archimedean Solids

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

TriakisTetrahedron(gon, o, r)

TetrakisHexahedron(gon, o, r)

TriakisOctahedron(gon, o, r)

PentakisDodecahedron(gon, o, r)

TriakisIcosahedron(gon, o, r)

RhombicDodecahedron(gon, o, r)

RhombicTriacontahedron(gon, o, r)

TrapezoidalIcositetrahedron(gon, o, r)

TrapezoidalHexecontahedron(gon, o, r)

HexakisOctahedron(gon, o, r)

HexakisIcosahedron(gon, o, r)

PentagonalIcositetrahedron(gon, o, r)

PentagonalHexacontahedron(gon, o, r)

Parameters

gon

-

the name of the polyhedron to be created

o

-

point

r

-

positive number

Description

• 

The functions are to define the reciprocal polyhedra of the thirteen Archimedean solids where o is the center of the polyhedron, and r the mid-radius.

• 

To access the information relating to these particular type of polyhedra, use the following function calls:

center(gon)

returns the center of gon.

faces(gon)

returns the faces of gon, each face is represented

 

as a list of coordinates of its vertices.

form(gon)

returns the form of gon.

radius(gon)

returns the mid-radius of gon.

schlafli(gon)

returns the Schlafli symbol of gon.

vertices(gon)

returns the coordinates of vertices of gon.

Examples

withgeom3d:

Define a trapezoidal icositetrahedron with center (1,2,3), radius of the mid-sphere 3

HexakisIcosahedront,pointo,1,2,3,3

t

(1)

Access information relating to the tetrahedron t:

coordinatescentert

1,2,3

(2)

formt

HexakisIcosahedron3d

(3)

radiust

3

(4)

schlaflit

dual_t3,5

(5)

Plotting:

drawt,style=patch,lightmodel=light3

See Also

geom3d[duality]