transform - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Transformations in the geom3d Package

 

Description

Examples

Description

• 

The help page geom3d/transformation describes the transformations that can be applied directly to a specific geometric object.

• 

In general, to define a transformation without specifying the object to which the transformation is to be applied, use the "verb" form of the above transformations.

rotation

rotate

translation

translate

ScrewDisplacement

ScrewDisplace

reflection

reflect

RotatoryReflection

RotatoryReflect

GlideReflection

GlideReflect

homothety

dilate

homology

StretchRotate

• 

Using the function geom3d[inverse], one can compute the inverse of a given product of transformations, the function geom3d[transprod] converts a given transformation or product of transformations into a product of three "primitive" transformations (translate, rotate, and dilate), while the function geom3d[transform] is to apply the "result" transformation to a specific geometric object.

Examples

withgeom3d:

Define t1 which is a homothety with ratio 3, center of homothety (0,0,0)

t1dilate3,pointo,0,0,0

t1dilate3,o

(1)

Define the plane oxz

pointA,1,0,0,pointB,0,0,1:

linel1,o,A,linel2,o,B,planep,l1,l2:

dsegmentAB,A,B:

Define t2 which is a glide-reflection with p as the plane of reflection and AB as the vector of translation

t2GlideReflectp,AB

t2GlideReflectp,AB

(2)

Define t3 as a screw-displacement with l3 as the rotational axis and AB as a vector of translation

t3ScrewDisplaceπ2,linel3,A,B,AB

t3ScrewDisplaceπ2,l3,AB

(3)

Compute q1 which is the product of t2t1t3

q1transprodt2t1,t3

q1transproddilate13,o,reflectp,translateAB,dilate3,o,rotateπ2,l3,translateAB

(4)

Compute the inverse of q1

q2inverseq1

q2transprodtranslate_AB,rotate3π2,l3,dilate13,o,translate_AB,reflectp,dilate3,o

(5)

Compute the product of q1q2; one can quickly recognize that this is an identity transformation

qtransprodq1,q2

qtransproddilate13,o,reflectp,translateAB,dilate3,o,rotateπ2,l3,translateAB,translate_AB,rotate3π2,l3,dilate13,o,translate_AB,reflectp,dilate3,o

(6)

Simple check

tetrahedronte,o,1

te

(7)

transformte1,te,q

te1

(8)

AreDistinctte,te1

false

(9)

Hence, the two objects are the same

See Also

geom3d/objects

geom3d/transformation

geom3d[draw]