gfun
`rec+rec`
termwise sum of two holonomic recurrences
`rec*rec`
termwise product of two holonomic recurrences
cauchyproduct
Cauchy product of two holonomic recurrences
Calling Sequence
Parameters
Description
Examples
`rec+rec`(rec1, rec2, u(n))
`rec*rec`(rec1, rec2, u(n))
cauchyproduct(rec1, rec2, u(n))
rec1, rec2
-
linear recurrences with polynomial coefficients
u
name; recurrence name
n
name; index of the recurrence u
The gfun[`rec+rec`](rec1, rec2, u(n)) command returns a termwise sum of two holonomic recurrences, rec1 and rec2.
If a⁡n and b⁡n are the sequences defined by rec1 and rec2 respectively, the gfun[`rec+rec`] function returns a recurrence for a⁡n+b⁡n.
The gfun[`rec*rec`](rec1, rec2, u(n)) command returns a termwise product of two holonomic recurrences, rec1 and rec2.
If a⁡n and b⁡n are the sequences defined by rec1 and rec2 respectively, the gfun[`rec*rec`] function returns a recurrence for a⁡n⁢b⁡n.
The gfun[cauchyproduct](rec1, rec2, u(n)) command returns the Cauchy product of the two holonomic recurrences, rec1 and rec2.
If a⁡n and b⁡n are the sequences defined by rec1 and rec2 respectively, the gfun[cauchyproduct] function returns a recurrence for their Cauchy product or convolution c⁡n=∑i=0n⁡a⁡i⁢b⁡n−i.
with⁡gfun:
rec1≔u⁡n+1=n+1⁢u⁡n:
rec2≔u⁡n+1=2⁢u⁡n:
`rec+rec`⁡rec1,rec2,u⁡n
2⁢n2+2⁢n⁢u⁡n+−n2−3⁢n+2⁢u⁡n+1+n−1⁢u⁡n+2,u⁡0=_t2+_C0,u⁡1=_t2+2⁢_C0,u⁡2=2⁢_t2+4⁢_C0,u⁡3=6⁢_t2+8⁢_C0
`rec*rec`⁡rec1,rec2,u⁡n
−2⁢n−2⁢u⁡n+u⁡n+1
cauchyproduct⁡rec1,rec2,u⁡n
2⁢n+4⁢u⁡n+−4−n⁢u⁡n+1+u⁡n+2,u⁡0=_C0,u⁡1=3⁢_C0
See Also
gfun[`diffeq+diffeq`]
gfun[`diffeq*diffeq`]
gfun[hadamardproduct]
gfun[parameters]
Download Help Document