gfun
borel
compute the Borel transform of a generating function
Calling Sequence
Parameters
Description
Examples
borel(expr, a(n), t)
expr
-
linear recurrence with polynomial coefficients
a
name; recurrence name
n
name; index of the recurrence a
t
(optional) 'diffeq'; specify as a linear differential equation
The borel(expr, a(n)) command computes the Borel transform of a generating function.
If a⁡n,n=0..∞ is the sequence of numbers defined by the recurrence expr, the borel function computes the recurrence for the numbers a⁡nn!.
If a⁡n,n=0..∞ is the sequence of numbers defined by the recurrence expr, the procedure computes the recurrence for the numbers a⁡nn!.
If t is specified as 'diffeq', expr is considered as a linear differential equation with polynomial coefficients for the function a⁡n. In this case, the function returns a linear differential equation satisfied by the Borel transform of a⁡n.
with⁡gfun:
rec≔a⁡0=1,a⁡1=1,a⁡n=n⁢a⁡n−1+a⁡n−2:
b≔borel⁡rec,a⁡n
b≔−a⁡n+−n2−3⁢n−2⁢a⁡n+1+n2+3⁢n+2⁢a⁡n+2,a⁡0=1,a⁡1=1
The invborel command is the inverse command.
invborel⁡b,a⁡n
−a⁡n+−n−2⁢a⁡n+1+a⁡n+2,a⁡0=1,a⁡1=1
You can also perform Borel transforms on the corresponding differential equations.
deq≔rectodiffeq⁡rec,a⁡n,f⁡x:
newdeq≔borel⁡deq,f⁡x,diffeq
newdeq≔−f⁡x−2⁢ⅆⅆxf⁡x+1−x⁢ⅆ2ⅆx2f⁡x,f⁡0=1,D⁡f⁡0=1
diffeqtorec⁡newdeq,f⁡x,a⁡n
−a⁡n+−n2−3⁢n−2⁢a⁡n+1+n2+3⁢n+2⁢a⁡n+2,a⁡0=1,a⁡1=1
See Also
gfun[diffeqtorec]
gfun[invborel]
rectodiffeq
Download Help Document