gfun
poltorec
determine the recurrence satisfied by a polynomial in holonomic sequences
Calling Sequence
Parameters
Description
Examples
poltorec(P, listrec, list_unknowns, u(n))
P
-
polynomial in n and u1(n), u2(n), ... and possibly their shifts (u1(n+1), u2(n+1), ...) and repeated shifts
listrec
list containing, for each of u1(n), u2(n), ..., either a linear recurrence equation it satisfies or a set containing the equation together with initial conditions
list_unknowns
list of sequences [u1⁡n,u2⁡n,...]
u
name; holonomic sequence name
n
name; variable of the holonomic sequence u
The poltorec(P, listrec, list_unknowns, u(n)) command returns the recurrence satisfied by the polynomial P.
If u1⁡n, u2⁡n, ... are holonomic sequence solutions of listrec[1], listrec[2], ..., the poltorec function returns a linear recurrence equation satisfied by P⁡n,u1⁡n,....
with⁡gfun:
rec1≔u1⁡0=1,u1⁡n+1=n+1⁢u1⁡n:
rec2≔u2⁡0=1,u2⁡1=1,u2⁡n+2=2⁢u2⁡n+1−3⁢n⁢u2⁡n:
poltorec⁡u1⁡n2+2⁢u1⁡n⁢u2⁡n,rec1,rec2,u1⁡n,u2⁡n,u⁡n
−3⁢n7−39⁢n6−192⁢n5−462⁢n4−579⁢n3−363⁢n2−90⁢n⁢u⁡n+5⁢n5+54⁢n4+209⁢n3+354⁢n2+254⁢n+60⁢u⁡n+1+−n4−12⁢n3−46⁢n2−62⁢n−15⁢u⁡n+2+n2+4⁢n⁢u⁡n+3,u⁡0=3,u⁡1=3,u⁡2=12,u⁡3=48
Cassini's identity:
fib≔F⁡0=1,F⁡1=1,F⁡n+2=F⁡n+1+F⁡n:
poltorec⁡F⁡n+2⁢F⁡n−F⁡n+12,fib,F⁡n,f⁡n
f⁡n+1+f⁡n,f⁡0=1
See Also
gfun['rec+rec']
gfun[`rec*rec`]
gfun[parameters]
gfun[poltodiffeq]
Download Help Document