in - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


in

membership operator for sets or lists

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

element in objs

elementobjs

element in SetOf( type )

elementSetOftype

Parameters

element

-

expression

objs

-

set or list

type

-

valid type expression

Description

• 

The in operator tests for set or list membership.  The given container, objs, is searched for element. Evaluating an in expression in a boolean context, or via evalb, returns true if element is in objs, it returns false if element is not in objs.  If the input contains symbolic components and the answer cannot be determined, a symbolic answer is returned. The default evaluator always returns in expressions unevaluated.

• 

You can enter the command in using either the 1-D or 2-D calling sequence. For example, 1 in {1,2,3,4} is equivalent to 11,2,3,4.

• 

When using the SetOf abstract set constructor, sets can be constructed from types.  For example, the set of all integers can be created using SetOf( integer ).  The SetOf constructor takes only one argument.  More complex sets can be constructed using union, intersect and minus.

• 

If obj is a complex expression involving union, intersect or minus, it may be more efficient to pass obj as an unevaluated expression.  Using an unevaluated expression allows in to use its own rules for set membership across these functions.

• 

The assume facility accepts the in operator.

Examples

1in1,2,3,4

11,2,3,4

(1)

evalb

true

(2)

1inSetOfinteger

1SetOfinteger

(3)

evalb

true

(4)

1inSetOfpolynomminusSetOfinteger

1SetOfpolynomSetOfinteger

(5)

evalb

false

(6)

1inAunionBunionCminusD

1ABCD

(7)

evalb

1Aor1Bor1Candnot1D

(8)

1in1,2,3intersect1,2,6minus1,4,7

12

(9)

evalb

false

(10)

evalb1in1,2,3intersect1,2,6minus1,4,7

false

(11)

isxinSetOfrealassumingx::fraction

true

(12)

isxinSetOfintegerassumingx::rational

false

(13)

coulditbexinSetOfintegerassumingx::rational

true

(14)

assumexinSetOfreal;aboutx

Originally x, renamed x~:
  is assumed to be: real

The command in also works with lists.

evalb1in6,7,1,8

true

(15)

sopsolvea+b=5,b2a2=25,a,b

sa=0,b=5

(16)

evalba=0ins

true

(17)

See Also

add

assume

do

intersect

list

minus

mul

seq

set

type

uneval

union