inttrans
addtable
add entry to transform lookup table
Calling Sequence
Parameters
Description
Examples
addtable(tname, patt, expr, t, s, parameter, condition, additional)
tname
-
name of transform for which patt is to be added to the lookup table
patt
pattern to be added to table
expr
transform of patt
t
independent variable in patt
s
independent variable in expr
parameter
(optional) list or set of parameters in patt and expr
condition
(optional) conditions that the parameters must satisfy
additional
additional argument for hankel and invmellin tables. This parameter is required for hankel and invmellin transform
Adds an entry to the lookup table for the integral transform <tname>. After this function is executed, any call to <tname> with argument <patt> will result in <expr> being returned.
If you wish this information to be saved across sessions, a facility exists, savetable, that will save the information of a particular table to a particular file.
The expression <patt> may include any number of parameters, which may also be used in the transform expression <expr>. Conditions may be placed on the parameters, by using the <conditional> argument. The <conditional> statement must be an unevaluated operator which evaluates to type boolean. Unevaluated operators include Range, _testeq, _signum, and _evalb.
The hankel and invmellin transforms take additional arguments in the transform. For this reason, they also take additional arguments within the <addtable>.
The format for hankel is of the form hankel=mu::Range(-1,infinity), to specify that the transform can be performed only if the additional argument to hankel is within the range -1 to infinity.
The format for invmellin is of the form invmellin=3..5, to specify that the transform can only be performed if the additional argument is contained within the range 3 to 5.
with(inttrans):
fourier(f(t),t,s);
ℱ⁡f⁡t,t,s
addtable(fourier,f(t),F(s),t,s);
fourier(f(x),x,z);
F⁡z
Functions with parameters
laplace(g(p*a+b),p,x);
addtable( laplace,g(x*a+b),G(s+a)/(b-a),x,s,{a,b}):
laplace(g(-p),p,x);
G⁡x−1
laplace(g(3*p+2),p,x);
−G⁡x+3
Functions with conditional parameters
hilbert(f(a*t),t,s);
ℍ⁡f⁡a⁢t,t,s
addtable(hilbert,f(a,t),F(s-a),t,s,{a},a::Range(3,7)):
hilbert(f(a,t),t,s);
ℍ⁡f⁡a,t,t,s
assume(a>3,a<7):
F⁡s−a~
addtable(mellin, h(a,t), F(s-a),t,s,{a},_evalb(a=Pi));
mellin(h(a,x),x,s);
ℳ⁡h⁡a~,x,x,s
mellin(h(Pi,x),x,s);
F⁡s−π
Hankel and invmellin transform
hankel(f(t),t,s,nu);
ℋ⁡f⁡t,t,s,ν
addtable(hankel,f(t),F(s,mu),t,s,hankel=mu::Range(-infinity,infinity)):
F⁡s,ν
addtable(hankel,g(t*a),G(s-a,mu),t,s,{a},hankel=mu::Range(-3,3)):
hankel(g(2*t),t,s,nu);
ℋ⁡g⁡2⁢t,t,s,ν
assume(1<nu,nu<2):
G⁡s−2,ν~
invmellin(f(t),t,s,1..2);
invmellin⁡f⁡t,t,s,1..2
addtable(invmellin,f(t*a),F(t-a),t,s,{a},a::Range(-3,3),invmellin=0..3):
F⁡t−1
See Also
insertpattern
inttrans[savetable]
patmatch
Download Help Document