inttrans
fouriersin
Fourier Sine transform
Calling Sequence
Parameters
Description
Examples
fouriersin(expr, t, s)
expr
-
expression, equation, or set of expressions and/or equations to be transformed
t
variable expr is transformed with respect to t
s
parameter of transform
opt
option to run this under (optional)
The fouriersin function computes the a Fourier Sine transform (F(s)) of expr (f(t)), a linear transformation C0,∞→C0,∞ defined by:
F⁡s=2⁢∫0∞f⁡t⁢sin⁡s⁢tⅆtπ
The function F⁡s returned is defined on the positive real axis only.
Expressions involving exponentials, rational polynomials, trigonometrics (sin, cos) with linear arguments, and a variety of other functions can all be transformed.
The Fourier Sine transform is self-inverting.
The fouriersin function transforms derivatives (diff or Diff) of functions of rapid descent, and can be used to solve differential equations.
The fouriersin function attempts to simplify an expression according to a set of heuristics and then match the result with a table of patterns. Entries can be added to this table by addtable(fouriersin, f(t), F(s), t, s), where F(s) is the transform of f(t), which may have an arbitrary number of parameters.
If the option opt is set to 'NO_INT', then the program will not resort to integration of the original problem if all other methods fail. This will increase the speed at which the transform will run.
fouriersin recognizes the Dirac-delta (or unit-impulse) function as Dirac(t) and Heaviside's unit step function as Heaviside(t).
The command with(inttrans,fouriersin) allows the use of the abbreviated form of this command.
with⁡inttrans:
fouriersin⁡3t+a,t,w
3⁢2⁢−cos⁡a⁢w⁢Ssi⁡a⁢w+sin⁡a⁢w⁢Ci⁡a⁢wπ
fouriersin⁡tt2+1,t,s
2⁢π⁢ⅇ−s2
fouriersin⁡,s,x
xx2+1
fouriersin⁡diff⁡f⁡x,x,x,w
−w⁢`?`
fouriersin⁡f⁡t,t,u
ℱ__s⁡f⁡t,t,u
fouriersin⁡,u,s
f⁡s
F≔int⁡g⁡x⁢sin⁡x⁢s,x=0..∞:
fouriersin⁡3⁢F,s,t
3⁢2⁢π⁢g⁡t2
fouriersin⁡t⁢exp⁡−3⁢t⁢Heaviside⁡t,t,w
6⁢2⁢wπ⁢w2+92
fouriersin⁡diff⁡y⁡t,`$`⁡t,2−y⁡t=sin⁡2⁢t,t,s
s⁢−s⁢`?`⁢π+2⁢y⁡0π−`?`=2⁢π⁢Dirac⁡s−22
solve⁡,fouriersin⁡y⁡t,t,s
−2⁢π⁢Dirac⁡s−2−2⁢s⁢y⁡02⁢π⁢s2+1
fouriersin⁡,s,t
−sin⁡2⁢t5+y⁡0⁢ⅇ−t
diff⁡,`$`⁡t,2−
sin⁡2⁢t
fouriersin⁡BesselJ⁡0,4⁢t,t,3+s
2⁢Heaviside⁡−1+sπ⁢3+s2−16
Adding to the table
addtable⁡fouriersin,h⁡t,H⁡s,t,s:
fouriersin⁡h⁡t,t,s
H⁡s
See Also
dsolve
inttrans[addtable]
Download Help Document