liesymm
Eta
Compute the coefficients of the generator of a finite point transformation
Calling Sequence
Parameters
Description
Examples
Eta(f, x)
Eta[1](f, x)
Eta[2](f, x, y)
Eta[3](f, x, y, z)
f
-
named partial in the sense of depvars()
x, y, z
Independent variable in the sense of indepvars()
This is a special differential operator defined in terms of TD. The result is an inert expression reported in terms of Diff procedure. The result can be forced to evaluate further by use of dvalue() or value(), but any variable dependencies for unknown functions must be defined prior to such evaluation. Such variable dependencies can be explicitly specified by use of vfix().
It arises in the course of extending the generator for the finite point transformations to the partial derivatives and is in fact computes the coefficient of the various partials in that generator.
This routine is part of the liesymm package and is ordinarily loaded via with(liesymm). It can also be called via the ``package style'' name liesymm[Eta].
with⁡liesymm:
indepvars⁡x,y
x,y
depvars⁡f,g
f,g
Η⁡f,x
ⅆV3ⅆx+w1⁢ⅆV3ⅆf+w3⁢ⅆV3ⅆg−w1⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w2⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg
w1=Diff⁡translate⁡w1
w1=ⅆfⅆx
Η2⁡g,x,y
∂∂yⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w2⁢∂∂fⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w4⁢∂∂gⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w6⁢∂∂w1ⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w8⁢∂∂w2ⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w10⁢∂∂w3ⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg+w12⁢∂∂w4ⅆV4ⅆx+w1⁢ⅆV4ⅆf+w3⁢ⅆV4ⅆg−w3⁢ⅆV1ⅆx+w1⁢ⅆV1ⅆf+w3⁢ⅆV1ⅆg−w4⁢ⅆV2ⅆx+w1⁢ⅆV2ⅆf+w3⁢ⅆV2ⅆg−w9⁢ⅆV1ⅆy+w2⁢ⅆV1ⅆf+w4⁢ⅆV1ⅆg+w6⁢ⅆV1ⅆw1+w8⁢ⅆV1ⅆw2+w10⁢ⅆV1ⅆw3+w12⁢ⅆV1ⅆw4−w10⁢ⅆV2ⅆy+w2⁢ⅆV2ⅆf+w4⁢ⅆV2ⅆg+w6⁢ⅆV2ⅆw1+w8⁢ⅆV2ⅆw2+w10⁢ⅆV2ⅆw3+w12⁢ⅆV2ⅆw4
See Also
liesymm[setup]
with
Download Help Document