linalg(deprecated)
frobenius
compute the Frobenius form of a matrix
ratform
a synonym for frobenius
Calling Sequence
Parameters
Description
Examples
References
frobenius(A)
frobenius(A, 'P')
A
-
square matrix
'P'
(optional) assigned the transformation matrix
Important: The linalg package has been deprecated. Use the superseding command, LinearAlgebra[FrobeniusForm], instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
The function frobenius(A) or ratform(A) computes and returns the Frobenius form F of a matrix A. This is also known as the Rational Canonical form of a matrix.
F has the following structure: F = diag(C[1], C[2],.., C[k]) where the Ci are companion matrices associated with polynomials p1,p2,..,pk with the property that pi divides pi−1, for i = 2..k.
If called in the form frobenius(A, 'P'), then P will be assigned the transformation matrix corresponding to the Frobenius form, that is, the matrix P such that inverse⁡P⁢A⁢P=F.
The Frobenius form defined in this way is unique (if we require that pi divides pi−1).
If the sizes of the blocks C1,C2,...,Ck are n1,n2,...,nk respectively, then the columns of the matrix P are the vectors [f1,A⁢f1,..,An1−1⁢f1,f2,...,fk,A⁢fk,...,Ank−1⁢fk]
These functions are part of the linalg package, and so can be used in the form frobenius(..) or ratform(..) only after performing the command with(linalg), or with(linalg,frobenius) or with(linalg,ratform). These functions can always be accessed in the long form linalg[frobenius](..) or linalg[ratform](..).
with⁡linalg,frobenius:
A≔array⁡−9,21,−15,4,2,0,−10,21,−14,4,2,0,−8,16,−11,4,2,0,−6,12,−9,3,3,0,−4,8,−6,0,5,0,−2,4,−3,0,1,3
A≔−921−15420−1021−14420−816−11420−612−9330−48−6050−24−3013
frobenius⁡A,P
00001501000−47001005600010−320000190000003
print⁡P
2175533732926512005126530840926564433126502511537533532259953557015311199953011211265302732659014726522407326545650726507347265220412656813926517216126535721926505163265154892654781126512192926525961126502714265814226525098265645422651405382651
Ozello, Patrick. Calcul Exact des Formes de Jordan et de Frobenius d'une Matrice. PhD Thesis, Joseph Fourier University, Grenoble, France, 1987.
Martin, K., and Olazabal, J.M. "An Algorithm to Compute the Change Basis for the Rational Form of K-endomorphisms." Extracta Mathematicae, (August 1991): 142-144.
See Also
Frobenius
LinearAlgebra
LinearAlgebra[FrobeniusForm]
Download Help Document