networks
complete
generate a complete graph
Calling Sequence
Parameters
Description
Examples
complete(n)
complete(m, n)
complete(m1,..., mk)
complete(vset)
n
-
integer indicating the number of vertices in the given part
m
m1, ..., mk
sequence of integers indicating the number of vertices in each part
vset
set of vertex names
Important: The networks package has been deprecated. Use the superseding command GraphTheory[CompleteGraph] instead.
This procedure generates various types of complete graphs. The number of arguments indicates the number of parts. Each part is specified by an integer indicating the number of vertices in that part. For example a complete bipartite graph is specified as complete(m, n).
In the case of one argument a set vset of vertex names may be specified.
This routine is normally loaded via the command with(networks) but may also be referenced using the full name networks[complete](...).
with⁡networks:
G≔complete⁡10:
edges⁡G
e1,e10,e11,e12,e13,e14,e15,e16,e17,e18,e19,e2,e20,e21,e22,e23,e24,e25,e26,e27,e28,e29,e3,e30,e31,e32,e33,e34,e35,e36,e37,e38,e39,e4,e40,e41,e42,e43,e44,e45,e5,e6,e7,e8,e9
ends⁡G
1,2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,2,3,2,4,2,5,2,6,2,7,2,8,2,9,2,10,3,4,3,5,3,6,3,7,3,8,3,9,3,10,4,5,4,6,4,7,4,8,4,9,4,10,5,6,5,7,5,8,5,9,5,10,6,7,6,8,6,9,6,10,7,8,7,9,7,10,8,9,8,10,9,10
H≔complete⁡2,3:
ends⁡H
1,3,1,4,1,5,2,3,2,4,2,5
K≔complete⁡ETH,SFU,UofS,UofW:
ends⁡K
ETH,SFU,ETH,UofS,ETH,UofW,SFU,UofS,SFU,UofW,UofS,UofW
See Also
GraphTheory
GraphTheory[CompleteGraph]
networks(deprecated)[cycle]
networks(deprecated)[petersen]
with
Download Help Document