numapprox
chebmult
multiply two Chebyshev series
Calling Sequence
Parameters
Description
Examples
chebmult(p, q)
p, q
-
two expressions assumed to be Chebyshev series
Given polynomials p and q expressed in a Chebyshev basis, form the product p⁢q expressed in a Chebyshev basis.
All Chebyshev basis polynomials T⁡k,x which appear must have the same second argument x (which can be any expression).
The input polynomials must be in expanded form (i.e. a sum of products). Normally, each term in the sum contains one and only one T⁡k,x factor except that if there are terms in the sum containing no T⁡k,x factor then each such term t is interpreted to represent t⁢T⁡0,x provided that t and x have no variables in common.
If no T⁡k,x factor appears in p or in q then the ordinary product p⁢q is returned.
The command with(numapprox,chebmult) allows the use of the abbreviated form of this command.
with⁡numapprox:
Digits≔3:
a≔chebyshev⁡sin⁡x,x
a≔0.880⁢T⁡1,x−0.0391⁢T⁡3,x+0.000500⁢T⁡5,x
b≔chebyshev⁡exp⁡x,x
b≔1.26⁢T⁡0,x+1.13⁢T⁡1,x+0.271⁢T⁡2,x+0.0443⁢T⁡3,x+0.00547⁢T⁡4,x+0.000543⁢T⁡5,x
chebmult⁡a,b
0.496⁢T⁡0,x+1.22⁢T⁡1,x+0.494⁢T⁡2,x+0.0718⁢T⁡3,x−0.00212⁢T⁡4,x−0.00227⁢T⁡5,x−0.000344⁢T⁡6,x−0.0000390⁢T⁡7,x+5.×10−7⁢T⁡8,x+1.37×10−6⁢T⁡9,x+1.36×10−7⁢T⁡10,x
c≔c0⁢T⁡0,x+c1⁢T⁡1,x
d≔d0⁢T⁡0,x+d1⁢T⁡1,x
chebmult⁡c,d
c0⁢d0+d1⁢c12⁢T⁡0,x+c0⁢d1+d0⁢c1⁢T⁡1,x+d1⁢c1⁢T⁡2,x2
chebmult⁡T⁡j,x,T⁡k,x
T⁡−k+j,x2+T⁡k+j,x2
assume⁡0<j,j<k
chebmult⁡c0+cj⁢T⁡j,x,T⁡k,x
cj⁢T⁡k~−j~,x2+c0⁢T⁡k~,x+cj⁢T⁡j~+k~,x2
assume⁡5<j,j<k
e≔a+ck⁢T⁡k,x
e≔0.880⁢T⁡1,x−0.0391⁢T⁡3,x+0.000500⁢T⁡5,x+ck⁢T⁡k~,x
chebmult⁡e,T⁡j,x
0.500⁢ck⁢T⁡k~−j~,x+0.000250⁢T⁡j~−5,x−0.0196⁢T⁡j~−3,x+0.440⁢T⁡j~−1,x+0.440⁢T⁡1+j~,x−0.0196⁢T⁡3+j~,x+0.000250⁢T⁡5+j~,x+0.500⁢ck⁢T⁡k~+j~,x
See Also
numapprox[chebsort]
numapprox[chebyshev]
orthopoly[T]
Download Help Document