numtheory(deprecated)
jacobi
Jacobi symbol
Calling Sequence
Parameters
Description
Examples
jacobi(a, b)
a
-
integer
b
non-negative integer
Important: The numtheory package has been deprecated. Use the superseding command NumberTheory[KroneckerSymbol], NumberTheory[JacobiSymbol] instead.
The function jacobi will compute the Jacobi symbol J⁡ab of a and b. If the factorization of b is p1k1⁢...⁢psks, then jacobi(a, b) = legendre(a, p1)^k1 * ... * legendre(a, ps)^ks, where legendre⁡a,p is the Legendre symbol of a and p.
Note that jacobi returns unevaluated if given algebraic arguments not of the types specified above.
The command with(numtheory,jacobi) allows the use of the abbreviated form of this command.
with⁡numtheory:
jacobi⁡12,3
0
jacobi⁡28,21
jacobi⁡6,11
−1
legendre⁡6,11
jacobi⁡226,135
1
jacobi⁡26,35
jacobi⁡−286,4272943
jacobi⁡−104,997
jacobi⁡888,1999
jacobi⁡a,b
See Also
NumberTheory[JacobiSymbol]
NumberTheory[KroneckerSymbol]
numtheory(deprecated)[legendre]
Download Help Document