numtheory(deprecated)
kronecker
Inhomogeneous Diophantine approximation
Calling Sequence
Parameters
Description
Examples
kronecker(ineqs, xvars, yvars)
kronecker(form, alpha, err)
ineqs
-
inequality or a set of inequalities with abs and/or valuep (p-adic valuation)
xvars
variable or set of variables
yvars
form
list of lists of real numbers or list of lists of p-adic numbers and primes
alpha
real number or list of real numbers or list of p-adic numbers
err
real number or a list of real numbers or list of positive integers
Important: The numtheory package has been deprecated. Use the superseding command NumberTheory[InhomogeneousDiophantine] instead.
This function finds a solution x1,x2,…,xn,y1,…,ym over the integers to a set of inequalities of the form
|a11⁢x1+…+a1n⁢xn⁢−α1−y1|≤err1
..............
|am1⁢x1⁢+…+amn⁢xn⁢−αm−ym|≤errm
or
valuepa11⁢x1+…+a1n⁢xn−α1−y1,p1≤err1
valuepam1⁢x1+…+amn⁢xn−αm−ym,pm≤errm
The inequalities can be described either explicitly, corresponding to the first calling sequence shown above (see the first two examples below) or implicitly, corresponding to the second calling sequence (see the last two examples below).
If the first calling sequence is used (i.e., the inequalities are given explicitly), then the result is returned in the form
x1=...,...,xn=...,y1,...,...,ym=...
If the second calling sequence is used, the result is returned as a pair of lists, the first corresponding to the x values and the second corresponding to the y values.
In the second calling sequence, if the α's are all the same, the list α1,...,αm may be replaced by α. The err's may be similarly replaced in the real case.
The command with(numtheory,kronecker) allows the use of the abbreviated form of this command.
with⁡numtheory:
with⁡padic:
kronecker⁡abs⁡−3.7⁢exp⁡2⁢x+y+313⁢z−513−v≤10−3,abs⁡0.01⁢log⁡2⁢x+24⁢log⁡5⁢y−8⁢312⁢z−exp⁡2.5−u≤10−7,x,y,z,u,v
x=8026,y=−3174,z=6916,v=−212628,u=−218388
x≔x:y≔y:u≔u:v≔v:
kronecker⁡valuep⁡1log⁡7⁢x+log⁡11⁢y−log⁡7−v,5≤5−15,valuep⁡log⁡3⁢x+exp⁡7⁢y−log⁡3−w,7≤7−12,valuep⁡log⁡5⁢x+log⁡7⁢y−log⁡5−u,3≤3−20,x,y,u,v,w
x=−15516275,y=6404775,w=−9747866955,u=−1192024656,v=−27148890349
kronecker⁡log⁡2,log⁡5,312,exp⁡2,π,313,exp⁡1,212,10−2,10−5
−2863,−10057,−1494,−20761,−54906
kronecker⁡log⁡3,log⁡7,log⁡13,sin⁡5,1log⁡7,exp⁡5,2,5,log⁡5,log⁡11,10,15
−2000,3125,2825,−800,−26295606385
See Also
isolve
NumberTheory[InhomogeneousDiophantine]
numtheory(deprecated)[minkowski]
Download Help Document