numtheory(deprecated)
mipolys
number of monic irreducible univariate polynomials
Calling Sequence
Parameters
Description
Examples
mipolys(n, p, m)
n
-
non-negative integer
p
prime integer (characteristic of a finite field)
m
(optional) positive integer
Important: The numtheory package has been deprecated. Use the superseding command NumberTheory[NumberOfIrreduciblePolynomials] instead.
The mipolys function computes the number of monic irreducible univariate polynomials of degree n over the finite field Zmodp, if the parameter m is not specified.
If m is specified, mipolys(n, p, m) computes the number of monic irreducible univariate polynomials of degree n over the Galois field GF⁡pm.
If m is not explicitly specified, m defaults to 1. In this context, the general mathematical definition of mipolys is
1n⁢sum⁡mobius⁡nd⁢pmd,for⁢d∈divisors⁡n
with⁡numtheory:
mipolys⁡3,5
40
mipolys⁡1,2,4
16
seq⁡mipolys⁡n,p,n=1..4
p,12⁢p2−12⁢p,13⁢p3−13⁢p,14⁢p4−14⁢p2
mipolys⁡3,p,4
13⁢p12−13⁢p4
mipolys⁡3,p,k
pk33−pk3
See Also
GF
NumberTheory[NumberOfIrreduciblePolynomials]
numtheory(deprecated)[divisors]
numtheory(deprecated)[mobius]
seq
Download Help Document