Solving ODEs of the Form Chini
Description
Examples
The general form of Chini's equation is given by:
Chini_ode := diff(y(x),x)=f(x)*y(x)^n-g(x)*y(x)+h(x);
Chini_ode≔ⅆⅆxy⁡x=f⁡x⁢y⁡xn−g⁡x⁢y⁡x+h⁡x
where f(x), g(x) and h(x) are arbitrary functions. See Differentialgleichungen, by E. Kamke, ODE 1.55, p. 303.
There is as yet no general solution for this ODE. For n=2, Chini's ODE is of Riccati type; for n=3 it is of Abel type. If the following combination of coefficients
Chini_invariant := f(x)^(-n-1)*h(x)^(-2*n+1)*(f(x)* diff(h(x),x)-diff(f(x),x)*h(x)-g(x)*f(x)*n*h(x))^n*n^(-n);
Chini_invariant≔f⁡x−n−1⁢h⁡x−2⁢n+1⁢f⁡x⁢ⅆⅆxh⁡x−ⅆⅆxf⁡x⁢h⁡x−g⁡x⁢f⁡x⁢n⁢h⁡xn⁢n−n
is independent of 'x', then the solution to the ODE follows in a straightforward manner; see Kamke, page 303. This scheme, proposed by Chini, generalizes the method of invariants for Abel ODEs (also proposed by Chini) found in Kamke's book as sub-method (g) for Abel ODEs; see odeadvisor,Abel.
Actually, when the square term in the Abel ODE is zero, the Abel invariant described in odeadvisor,Abel is equal to the Chini invariant described below. Now all Abel ODEs can be rewritten in Chini format (that is, square term = 0; see example below), and if the Abel invariant of an Abel ODE is constant, then the Abel invariant for this ODE written in Chini format is also constant. To understand this, note that the "independence of the invariant with respect to 'x'" for Abel ODEs is preserved under transformations of the form
y -> G(t)*u(t)+H(t);
y↦G⁡t⋅u⁡t+H⁡t
x -> F(t);
x↦F⁡t
for any G, H, and F. The transformation that removes the square term in Abel ODEs (that is, rewrites it in Chini format) is given by
y -> u(x)-f2/(f3*3);
y↦u⁡x−f23⋅f3
and is just a particular case of the general transformation displayed above (see also odeadvisor,Abel.
with⁡PDEtools,dchange
dchange
with⁡DEtools,odeadvisor
odeadvisor
odeadvisor⁡Chini_ode
_Chini
All Abel ODEs, such as the following:
Abel_ode≔diff⁡y⁡x,x=f3⁡x⁢y⁡x3+f2⁡x⁢y⁡x2+f1⁡x⁢y⁡x+f0⁡x
Abel_ode≔ⅆⅆxy⁡x=f3⁡x⁢y⁡x3+f2⁡x⁢y⁡x2+f1⁡x⁢y⁡x+f0⁡x
can be written in 'Chini' form by eliminating the square term through the following transformation:
tr≔y⁡x=u⁡x−f2⁡x3⁢f3⁡x
Abel_ode_Chini≔collect⁡diff⁡u⁡x,x=solve⁡dchange⁡tr,Abel_ode,u,diff⁡u⁡x,x,u⁡x
Abel_ode_Chini≔ⅆⅆxu⁡x=f3⁡x⁢u⁡x3+27⁢f3⁡x2⁢f1⁡x−9⁢f3⁡x⁢f2⁡x2⁢u⁡x27⁢f3⁡x2+27⁢f0⁡x⁢f3⁡x2−9⁢f3⁡x⁢f2⁡x⁢f1⁡x+2⁢f2⁡x3+9⁢ⅆⅆxf2⁡x⁢f3⁡x−9⁢f2⁡x⁢ⅆⅆxf3⁡x27⁢f3⁡x2
coeff⁡rhs⁡Abel_ode_Chini,u⁡x,2
0
Kamke, 1.52:
ode≔diff⁡y⁡x,x=a⁢y⁡xn+b⁢xn1−n
ode≔ⅆⅆxy⁡x=a⁢y⁡xn+b⁢xn−n+1
odeadvisor⁡ode
_homogeneous,class G,_Chini
ans≔dsolve⁡ode,y⁡x
ans≔∫_by⁡xxnn−1a⁢x⁢n−1⁢_an+_a⁢xnn−1+b⁢x⁢n−1ⅆ_a−c__1=0
Kamke, 1.54:
ode≔diff⁡y⁡x,x−an⁢f⁡x1−n⁢diff⁡g⁡x,x⁢y⁡xn−diff⁡f⁡x,xf⁡x⁢y⁡x−f⁡x⁢diff⁡g⁡x,x
ode≔ⅆⅆxy⁡x−an⁢f⁡x−n+1⁢ⅆⅆxg⁡x⁢y⁡xn−ⅆⅆxf⁡x⁢y⁡xf⁡x−f⁡x⁢ⅆⅆxg⁡x
odeadvisor⁡ode,y⁡x
_Chini,_1st_order,_with_symmetry_[F(x),G(x)*y+H(x)]
dsolve⁡ode,y⁡x
a⁢y⁡x⁢LerchPhi⁡−a⁢y⁡xf⁡xn,1,1nn⁢f⁡x−a⁢g⁡x+c__1=0
See Also
DEtools
dsolve
quadrature
linear
separable
Bernoulli
exact
homogeneous
homogeneousB
homogeneousC
homogeneousD
homogeneousG
Chini
Riccati
Abel
Abel2A
Abel2C
rational
Clairaut
dAlembert
sym_implicit
patterns
odeadvisor,types
Download Help Document