Emden, Modified Emden, and Emden/Fowler ODEs
Description
Examples
The general forms of the Emden, modified Emden and Emden/Fowler ODEs are given by the following:
Emden_ode := diff(x^2*diff(y(x),x),x)+x^2*y(x)^n=0;
Emden_ode≔2⁢x⁢ⅆⅆxy⁡x+x2⁢ⅆ2ⅆx2y⁡x+x2⁢y⁡xn=0
modified_Emden_ode := diff(diff(y(x),x),x)+a(x)*diff(y(x),x)+y(x)^n = 0;
modified_Emden_ode≔ⅆ2ⅆx2y⁡x+a⁡x⁢ⅆⅆxy⁡x+y⁡xn=0
Emden_Fowler_ode := diff(x^p*diff(y(x),x),x)+x^sigma*y(x)^n=0;
Emden_Fowler_ode≔xp⁢p⁢ⅆⅆxy⁡xx+xp⁢ⅆ2ⅆx2y⁡x+xσ⁢y⁡xn=0
where n is an integer and a(x) is an arbitrary function of x.
See Leach, "First Integrals for the modified Emden equation"; and Rosenau, "A Note on Integration of the Emden-Fowler Equation". There are certain special cases of the Emden-Fowler equation which can be solved exactly. See also Polyanin and Zaitsev, "Exact Solutions of Ordinary Differential Equations", p. 241.
with⁡DEtools,odeadvisor,symgen:
odeadvisor⁡Emden_ode
_Emden,_2nd_order,_with_linear_symmetries
odeadvisor⁡modified_Emden_ode
_Emden,_modified
odeadvisor⁡Emden_Fowler_ode
_Emden,_Fowler,_2nd_order,_with_linear_symmetries
The second order Emden ODE can be reduced to a first order Abel ODE once the system succeeds in finding one polynomial symmetry for it (see symgen):
symgen⁡Emden_ode,way=3
_ξ=−x⁢n−12,_η=y
From which, giving the same indication directly to dsolve (see dsolve/Lie) it returns a reduced (Abel type) ODE:
ans≔dsolve⁡Emden_ode,HINT=−12⁢x⁢n+12⁢x,y
ans≔y⁡x=_a⁢ⅇ∫_b⁡_aⅆ_a+c__1whereⅆⅆ_a_b⁡_a=_an⁢n24−_an⁢n2−_a⁢n2+_an4+3⁢_a2⁢_b⁡_a3+−n2+52⁢_b⁡_a2,_a=y⁡x⁢x2n−1,_b⁡_a=−2x2n−1⁢ⅆⅆxy⁡x⁢x⁢n−x⁢ⅆⅆxy⁡x+2⁢y⁡x,x=ⅇ−∫_b⁡_aⅆ_a+c__1⁢n2+∫_b⁡_aⅆ_a2+c__12,y⁡x=_a⁢ⅇ∫_b⁡_aⅆ_a+c__1
The reduced ODE can be selected using the mouse, or through:
reduced_ode≔op⁡2,2,1,1,ans
reduced_ode≔ⅆⅆ_a_b⁡_a=_an⁢n24−_an⁢n2−_a⁢n2+_an4+3⁢_a2⁢_b⁡_a3+−n2+52⁢_b⁡_a2
odeadvisor⁡reduced_ode
_Abel
See Also
DEtools
odeadvisor
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document