Lagerstrom - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Lagerstrom ODEs

 

Description

Examples

Description

• 

The general form of the Lagerstrom ODE is given by the following:

Lagerstrom_ode := diff(y(x),x,x)= -k*diff(y(x),x)/x-epsilon*y(x)*diff(y(x),x);

Lagerstrom_odeⅆ2ⅆx2yx=kⅆⅆxyxxεyxⅆⅆxyx

(1)
  

See Rosenblat and Shepherd, "On the Asymptotic Solution of the Lagerstrom Model Equation".

Examples

The second order Lagerstrom ODE can be reduced to a first order ODE of Abel type once the system succeeds in finding one polynomial symmetry for it (see symgen):

withDEtools,odeadvisor,symgen:

odeadvisorLagerstrom_ode

_Lagerstrom,_2nd_order,_with_linear_symmetries

(2)

symgenLagerstrom_ode,way=3

_ξ=x,_η=y

(3)

From which, giving the same indication directly to dsolve, you obtain the reduction of order

ansdsolveLagerstrom_ode,way=3

ansyx=_aⅇ_b_aⅆ_a+c__1whereⅆⅆ_a_b_a=_a2ε_ak+2_a_b_a3+ε_ak+3_b_a2,_a=yxx,_b_a=1xⅆⅆxyxx+yx,x=1ⅇ_b_aⅆ_a+c__1,yx=_aⅇ_b_aⅆ_a+c__1

(4)

For the structure of the solution above see ODESolStruc. Reductions of order can also be tested with odetest

odetestans,Lagerstrom_ode

0

(5)

The reduced ODE is of Abel type and can be selected using the mouse, or as follows

reduced_odeop2,2,1,1,ans

reduced_odeⅆⅆ_a_b_a=_a2ε_ak+2_a_b_a3+ε_ak+3_b_a2

(6)

odeadvisorreduced_ode

_Abel

(7)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types