Lagerstrom ODEs
Description
Examples
The general form of the Lagerstrom ODE is given by the following:
Lagerstrom_ode := diff(y(x),x,x)= -k*diff(y(x),x)/x-epsilon*y(x)*diff(y(x),x);
Lagerstrom_ode≔ⅆ2ⅆx2y⁡x=−k⁢ⅆⅆxy⁡xx−ε⁢y⁡x⁢ⅆⅆxy⁡x
See Rosenblat and Shepherd, "On the Asymptotic Solution of the Lagerstrom Model Equation".
The second order Lagerstrom ODE can be reduced to a first order ODE of Abel type once the system succeeds in finding one polynomial symmetry for it (see symgen):
with⁡DEtools,odeadvisor,symgen:
odeadvisor⁡Lagerstrom_ode
_Lagerstrom,_2nd_order,_with_linear_symmetries
symgen⁡Lagerstrom_ode,way=3
_ξ=−x,_η=y
From which, giving the same indication directly to dsolve, you obtain the reduction of order
ans≔dsolve⁡Lagerstrom_ode,way=3
ans≔y⁡x=_a⁢ⅇ∫_b⁡_aⅆ_a+c__1whereⅆⅆ_a_b⁡_a=−_a2⁢ε−_a⁢k+2⁢_a⁢_b⁡_a3+−ε⁢_a−k+3⁢_b⁡_a2,_a=y⁡x⁢x,_b⁡_a=−1x⁢ⅆⅆxy⁡x⁢x+y⁡x,x=1ⅇ∫_b⁡_aⅆ_a+c__1,y⁡x=_a⁢ⅇ∫_b⁡_aⅆ_a+c__1
For the structure of the solution above see ODESolStruc. Reductions of order can also be tested with odetest
odetest⁡ans,Lagerstrom_ode
0
The reduced ODE is of Abel type and can be selected using the mouse, or as follows
reduced_ode≔op⁡2,2,1,1,ans
reduced_ode≔ⅆⅆ_a_b⁡_a=−_a2⁢ε−_a⁢k+2⁢_a⁢_b⁡_a3+−ε⁢_a−k+3⁢_b⁡_a2
odeadvisor⁡reduced_ode
_Abel
See Also
DEtools
odeadvisor
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document