Liouville ODEs
Description
Examples
The general form of the Liouville ODE is given by the following:
Liouville_ode := diff(y(x),x,x)+g(y(x))*diff(y(x),x)^2+f(x)*diff(y(x),x) = 0;
Liouville_ode≔ⅆ2ⅆx2y⁡x+g⁡y⁡x⁢ⅆⅆxy⁡x2+f⁡x⁢ⅆⅆxy⁡x=0
where g and f are arbitrary functions. See Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations".
with⁡DEtools,odeadvisor,symgen,symtest:
odeadvisor⁡Liouville_ode
_Liouville,_2nd_order,_reducible,_mu_x_y1,_2nd_order,_reducible,_mu_xy
The Liouville ODE has the following symmetries (see dsolve,Lie):
symmetries≔symgen⁡Liouville_ode
symmetries≔_ξ=0,_η=ⅇ−∫g⁡yⅆy,_ξ=0,_η=∫ⅇ∫g⁡yⅆyⅆy⁢ⅇ−∫g⁡yⅆy,_ξ=ⅇ−∫−f⁡xⅆx,_η=0,_ξ=∫ⅇ∫−f⁡xⅆxⅆx⁢ⅇ−∫−f⁡xⅆx,_η=0
These symmetries can be tested using symtest
map⁡symtest,symmetries,Liouville_ode
0,0,0,0
Knowing two independent symmetries for a second order ODE almost always leads to its answer, as in the following Liouville ODE:
ans≔dsolve⁡Liouville_ode
ans≔∫` `y⁡xⅇ∫g⁡_bⅆ_bⅆ_b−c__1⁢∫ⅇ−∫f⁡xⅆxⅆx−c__2=0
Implicit and explicit answers for ODEs can be tested using odetest.
odetest⁡ans,Liouville_ode
0
See Also
DEtools
odeadvisor
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document