Painleve ODEs - First through Sixth Transcendents
Description
Examples
The general forms of the Painleve ODEs are given by the following:
Painleve_ode_1 := diff(y(x),x,x) = 6*y(x)^2+x;
Painleve_ode_1≔ⅆ2ⅆx2y⁡x=6⁢y⁡x2+x
Painleve_ode_2 := diff(y(x),x,x) = 2*y(x)^3+x*y(x)+a;
Painleve_ode_2≔ⅆ2ⅆx2y⁡x=2⁢y⁡x3+x⁢y⁡x+a
Painleve_ode_3 := diff(y(x),x,x) = diff(y(x),x)^2/y(x)-diff(y(x),x)/x+(a*y(x)^2+b)/x+g*y(x)^3+d/y(x);
Painleve_ode_3≔ⅆ2ⅆx2y⁡x=ⅆⅆxy⁡x2y⁡x−ⅆⅆxy⁡xx+a⁢y⁡x2+bx+g⁢y⁡x3+dy⁡x
Painleve_ode_4 := diff(y(x),x,x) = 1/2*diff(y(x),x)^2/y(x)+3/2*y(x)^3+4*x*y(x)^2+2*(x^2-a)*y(x)+b/y(x);
Painleve_ode_4≔ⅆ2ⅆx2y⁡x=ⅆⅆxy⁡x22⁢y⁡x+3⁢y⁡x32+4⁢x⁢y⁡x2+2⁢x2−a⁢y⁡x+by⁡x
Painleve_ode_5 := diff(y(x),x,x) = (1/2/y(x)+1/(y(x)-1))*diff(y(x),x)^2-diff(y(x),x)/x+(y(x)-1)^2/x^2*(a* y(x)+b/y(x))+g*y(x)/x+d*y(x)*(y(x)+1)/(y(x)-1);
Painleve_ode_5≔ⅆ2ⅆx2y⁡x=12⁢y⁡x+1y⁡x−1⁢ⅆⅆxy⁡x2−ⅆⅆxy⁡xx+y⁡x−12⁢a⁢y⁡x+by⁡xx2+g⁢y⁡xx+d⁢y⁡x⁢y⁡x+1y⁡x−1
Painleve_ode_6 := diff(y(x),x,x)=1/2*(1/y(x)+1/(y(x)-1)+1/(y(x)-x))* diff(y(x),x)^2-(1/x+1/(x-1)+1/(y(x)-x))*diff(y(x),x)+y(x)*(y(x)-1)* (y(x)-x)/x^2/(x-1)^2*(a+b*x/y(x)^2+g*(x-1)/(y(x)-1)^2+d*x*(x-1)/(y(x)-x)^2);
Painleve_ode_6≔ⅆ2ⅆx2y⁡x=1y⁡x+1y⁡x−1+1y⁡x−x⁢ⅆⅆxy⁡x22−1x+1x−1+1y⁡x−x⁢ⅆⅆxy⁡x+y⁡x⁢y⁡x−1⁢y⁡x−x⁢a+b⁢xy⁡x2+g⁢x−1y⁡x−12+d⁢x⁢x−1y⁡x−x2x2⁢x−12
These ODEs are irreducible. See E.L. Ince. Ordinary Differential Equations, New York: Dover Publications, 1956, 345.
All the Painleve ODEs are recognized by the odeadvisor command:
with⁡DEtools,odeadvisor
odeadvisor
odeadvisor⁡Painleve_ode_1
_Painleve,1st
odeadvisor⁡Painleve_ode_2
_Painleve,2nd
odeadvisor⁡Painleve_ode_3
_Painleve,3rd
odeadvisor⁡Painleve_ode_4
_Painleve,4th
odeadvisor⁡Painleve_ode_5
_Painleve,5th
odeadvisor⁡Painleve_ode_6
_Painleve,6th
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document