Van der Pol ODEs
Description
The general form of the Van der Pol ODE is given by the following:
Van_der_Pol_ode := diff(y(x),x,x)-mu*(1-y(x)^2)*diff(y(x),x)+y(x)=0;
Van_der_Pol_ode≔ⅆ2ⅆx2y⁡x−μ⁢1−y⁡x2⁢ⅆⅆxy⁡x+y⁡x=0
See Birkhoff and Rota, "Ordinary Differential Equations", p. 134.
The second order Van der Pol ODE can be reduced to a first order ODE of Abel type as soon as the system succeeds in finding one polynomial symmetry for it (see symgen):
with(DEtools, odeadvisor, symgen):
odeadvisor(Van_der_Pol_ode);
_2nd_order,_missing_x,_Van_der_Pol
symgen(Van_der_Pol_ode, way=3);
_ξ=1,_η=0
From which, giving the same indication directly to dsolve you obtain the reduction of order
ans := dsolve(Van_der_Pol_ode,way=3);
ans≔y⁡x=_awhereⅆⅆ_a_b⁡_a⁢_b⁡_a+_b⁡_a⁢_a2⁢μ−μ⁢_b⁡_a+_a=0,_a=y⁡x,_b⁡_a=ⅆⅆxy⁡x,x=∫1_b⁡_aⅆ_a+c__1,y⁡x=_a
For the structure of the solution above see ODESolStruc. Reductions of order can also be tested with odetest
odetest(ans,Van_der_Pol_ode);
0
The reduced ODE is of type Abel, and can be selected using either the mouse, or the following:
reduced_ode := op([2,2,1,1],ans);
reduced_ode≔ⅆⅆ_a_b⁡_a⁢_b⁡_a+_b⁡_a⁢_a2⁢μ−μ⁢_b⁡_a+_a=0
odeadvisor(reduced_ode);
_rational,_Abel,2nd type,class A
See Also
DEtools
odeadvisor
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
sym_Fx
linear_sym
Bessel
Painleve
Halm
Gegenbauer
Duffing
ellipsoidal
elliptic
erf
Emden
Jacobi
Hermite
Lagerstrom
Laguerre
Liouville
Lienard
Van_der_Pol
Titchmarsh
odeadvisor,types
Download Help Document