Solving Exact Linear ODEs
Description
Examples
The general form of the exact, linear ODE is given by the following:
exact_linear_ode := diff(linear_ODE(x),x) = 0;
exact_linear_ode≔ⅆⅆxlinear_ODE⁡x=0
where linearODE(x) is a linear ODE of any differential order; see Murphy, "Ordinary Differential Equations and their Solutions", p. 221. The order of these exact linear ODEs can be reduced since they are the total derivative of an ODE of one order lower. The reduced ODE is:
linear_ODE(x) + _C1;
linear_ODE⁡x+_C1
The most general exact linear non-homogeneous ODE of second order; this case is solvable.
with⁡DEtools,odeadvisor
odeadvisor
ODE≔diff⁡diff⁡y⁡x,x=A⁡x⁢y⁡x+B⁡x,x
ODE≔ⅆ2ⅆx2y⁡x=ⅆⅆxA⁡x⁢y⁡x+A⁡x⁢ⅆⅆxy⁡x+ⅆⅆxB⁡x
odeadvisor⁡ODE,y⁡x
_2nd_order,_exact,_linear,_nonhomogeneous
dsolve⁡ODE,y⁡x
y⁡x=c__2+∫c__1+B⁡x⁢ⅇ∫−A⁡xⅆxⅆx⁢ⅇ−∫−A⁡xⅆx
The general exact linear ODE of fourth order which can be reduced to an exact linear ODE of third order; this can be reduced to a second order ODE and the answer is expressed using DESol
ODE≔diff⁡diff⁡y⁡x,x,x=A⁡x⁢y⁡x+B⁡x⁢diff⁡y⁡x,x+F⁡x,x,x
ODE≔ⅆ4ⅆx4y⁡x=ⅆ2ⅆx2A⁡x⁢y⁡x+2⁢ⅆⅆxA⁡x⁢ⅆⅆxy⁡x+A⁡x⁢ⅆ2ⅆx2y⁡x+ⅆ2ⅆx2B⁡x⁢ⅆⅆxy⁡x+2⁢ⅆⅆxB⁡x⁢ⅆ2ⅆx2y⁡x+B⁡x⁢ⅆ3ⅆx3y⁡x+ⅆ2ⅆx2F⁡x
_high_order,_exact,_linear,_nonhomogeneous
y⁡x=DESol⁡−A⁡x⁢_Y⁡x−B⁡x⁢ⅆⅆx_Y⁡x+ⅆ2ⅆx2_Y⁡x−c__2−c__1⁢x−F⁡x,_Y⁡x
The general exact linear ODE of fifth order which can be reduced to a first order linear ODE. This ODE can be solved to the end.
ODE≔diff⁡diff⁡y⁡x,x=A⁡x⁢y⁡x+B⁡x,x,x,x,x
ODE≔ⅆ5ⅆx5y⁡x=ⅆ4ⅆx4A⁡x⁢y⁡x+4⁢ⅆ3ⅆx3A⁡x⁢ⅆⅆxy⁡x+6⁢ⅆ2ⅆx2A⁡x⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxA⁡x⁢ⅆ3ⅆx3y⁡x+A⁡x⁢ⅆ4ⅆx4y⁡x+ⅆ4ⅆx4B⁡x
_high_order,_fully,_exact,_linear
ans≔dsolve⁡ODE,y⁡x
ans≔y⁡x=c__5+∫4⁢c__1⁢x3+3⁢c__2⁢x2+2⁢c__3⁢x+c__4+B⁡x⁢ⅇ∫−A⁡xⅆxⅆx⁢ⅇ−∫−A⁡xⅆx
odetest⁡ans,ODE
0
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
odeadvisor,types
Download Help Document