Solving Linear ODEs
Description
Examples
The general form of the linear ODE is given by:
linear_ODE≔A0⁢y⁡x+A1⁢ⅆⅆxy⁡x+A2⁢ⅆ2ⅆx2y⁡x+...=F⁡x
where the coefficients An can be functions of x, see Differentialgleichungen, by E. Kamke, p. 69. Roughly speaking, there is no general method for solving the most general linear ODE of differential order greater than one. However, this is an active research area and there are many solving schemes which are applicable when the linear ODE satisfies certain conditions. In all the cases, if the method is applicable and the ODE is of second order, the ODE can be integrated to the end; otherwise, its order can be reduced by one or more, depending on the case. A summary of the methods implemented in dsolve for linear ODEs is as follows:
the ODE is exact (see odeadvisor, exact_linear);
the coefficients An are rational functions and the ODE has exponential solutions (see DEtools, expsols);
the ODE has liouvillian solutions (see DEtools, kovacicsols);
the ODE has three regular singular points (see DEtools, RiemannPsols).
the ODE has simple symmetries of the form 0,F⁡x (see odeadvisor, sym_Fx);
the ODE has special functions" solutions (see odeadvisor, classifications for second order ODEs).
The most general exact linear non-homogeneous ODE of second order; this case is solvable (see odeadvisor, exact_linear):
with⁡DEtools,odeadvisor
odeadvisor
ode1≔diff⁡diff⁡y⁡x,x=A⁡x⁢y⁡x+B⁡x,x
ode1≔ⅆ2ⅆx2y⁡x=ⅆⅆxA⁡x⁢y⁡x+A⁡x⁢ⅆⅆxy⁡x+ⅆⅆxB⁡x
odeadvisor⁡ode1,y⁡x
_2nd_order,_exact,_linear,_nonhomogeneous
dsolve⁡ode1,y⁡x
y⁡x=c__2+∫c__1+B⁡x⁢ⅇ∫−A⁡xⅆxⅆx⁢ⅇ−∫−A⁡xⅆx
Exponential solutions for a third order linear ODE .
ode2≔x2+x⁢diff⁡y⁡x,x,x,x−x2−2⁢diff⁡y⁡x,x,x−x+2⁢diff⁡y⁡x,x=0
ode2≔x2+x⁢ⅆ3ⅆx3y⁡x−x2−2⁢ⅆ2ⅆx2y⁡x−x+2⁢ⅆⅆxy⁡x=0
dsolve⁡ode2
y⁡x=c__1+c__2⁢ln⁡x+c__3⁢ⅇx
An example of an ODE with regular singular points
ode3≔x⁢1−x⁢diff⁡y⁡x,x,x+c−a+b+1⁢x⁢diff⁡y⁡x,x−a⁢b⁢y⁡x
ode3≔x⁢1−x⁢ⅆ2ⅆx2y⁡x+c−a+b+1⁢x⁢ⅆⅆxy⁡x−a⁢b⁢y⁡x
dsolve⁡ode3
y⁡x=c__1⁢hypergeom⁡a,b,c,x+c__2⁢x−c+1⁢hypergeom⁡a−c+1,b−c+1,2−c,x
An example for which symmetries of the form 0,F⁡x can be found (see odeadvisor, sym_Fx)
ode4≔diff⁡y⁡x,x,x=ln⁡x⁢diff⁡y⁡x,x+y⁡x⁢1+ln⁡x
ode4≔ⅆ2ⅆx2y⁡x=ln⁡x⁢ⅆⅆxy⁡x+y⁡x⁢1+ln⁡x
odeadvisor⁡ode4
_2nd_order,_with_linear_symmetries,_2nd_order,_linear,_with_symmetry_[0,F(x)]
dsolve⁡ode4
y⁡x=∫xxⅇx⁢ⅇ−x2ⅆx⁢c__1+c__2⁢ⅇ−x
Some ODEs with special function solutions (see odeadvisor, second order ODEs).
Bessel ODE.
ode5≔x2⁢diff⁡y⁡x,x,x+x⁢diff⁡y⁡x,x+x2−n2⁢y⁡x=0
ode5≔ⅆ2ⅆx2y⁡x⁢x2+ⅆⅆxy⁡x⁢x+−n2+x2⁢y⁡x=0
odeadvisor⁡ode5
_Bessel
dsolve⁡ode5
y⁡x=c__1⁢BesselJ⁡n,x+c__2⁢BesselY⁡n,x
Complete Elliptic Integral ODE.
ode6≔diff⁡x⁢1−x2⁢diff⁡y⁡x,x,x−x⁢y⁡x=0
ode6≔−x2+1⁢ⅆⅆxy⁡x−2⁢x2⁢ⅆⅆxy⁡x+x⁢−x2+1⁢ⅆ2ⅆx2y⁡x−x⁢y⁡x=0
odeadvisor⁡ode6
_elliptic,_class_I
dsolve⁡ode6
y⁡x=c__1⁢EllipticK⁡x+c__2⁢EllipticCK⁡x
Gegenbauer ODE.
ode7≔x2−1⁢diff⁡diff⁡y⁡x,x,x−2⁢m+3⁢x⁢diff⁡y⁡x,x+λ⁢y⁡x=0
ode7≔x2−1⁢ⅆ2ⅆx2y⁡x−2⁢m+3⁢x⁢ⅆⅆxy⁡x+λ⁢y⁡x=0
odeadvisor⁡ode7
_Gegenbauer
dsolve⁡ode7
y⁡x=c__1⁢x2−154+m2⁢LegendreP⁡m2−λ+4⁢m+4−12,52+m,x+c__2⁢x2−154+m2⁢LegendreQ⁡m2−λ+4⁢m+4−12,52+m,x
See Also
DESol
dsolve
odeadvisor,TYPES
Download Help Document