linear sym - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


ODEs Having Linear Symmetries

 

Description

Examples

Description

• 

The general forms of ODEs having one of the following linear symmetries

[xi=a+b*x, eta=0], [xi=a+b*y, eta=0], [xi=0, eta=c+d*x], [xi=0, eta=c+d*y]:

  

where the infinitesimal symmetry generator is given by:

G := f -> xi*diff(f,x) + eta*diff(f,y);

Gf→ξxf+ηyf

(1)
  

are given by:

ode[1] := DEtools[equinv]([xi=a+b*x, eta=0], y(x), 2);

ode1ⅆ2ⅆx2yx=f__1yx,ⅆⅆxyxbx+abx+a2

(2)

ode[2] := DEtools[equinv]([xi=a+b*y, eta=0], y(x), 2);

ode2ⅆ2ⅆx2yx=f__1yx,ⅆⅆxyxbxbyxaⅆⅆxyxbyx+aⅆⅆxyx3byx+a3

(3)

ode[3] := DEtools[equinv]([xi=0, eta=c+d*x], y(x), 2);

ode3ⅆ2ⅆx2yx=f__1x,ⅆⅆxyxdx+ⅆⅆxyxcdyxxd+c

(4)

ode[4] := DEtools[equinv]([xi=0, eta=c+d*y], y(x), 2);

ode4ⅆ2ⅆx2yx=f__1x,ⅆⅆxyxdyx+cdyx+f__1x,ⅆⅆxyxdyx+cc

(5)
  

Although the symmetries of these families of ODEs can be determined in a direct manner (using symgen), the simplicity of their pattern motivated us to have separate routines for recognizing them.

Examples

withDEtools,equinv,odeadvisor,symgen:

odeadvisorode1

_2nd_order,_with_linear_symmetries

(6)

odeadvisorode2

_2nd_order,_with_linear_symmetries

(7)

odeadvisorode3

_2nd_order,_with_linear_symmetries

(8)

odeadvisorode4

_2nd_order,_with_linear_symmetries

(9)

As an example that can be solved by the related routine, consider

ode5equinv0,y,x,0,yx,2

ode5ⅆ2ⅆx2yx=f__1ⅆⅆxyxxyxyxx2

(10)

dsolveode5

yx=ⅇ` `lnxRootOf` `_Z1_a+_a2f__1_aⅆ_a_b+c__1ⅆ_b+c__2

(11)

See Also

DEtools

odeadvisor

dsolve,Lie

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types