missing - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Solving ODEs That Do Not Contain Either the Dependent or Independent Variable

 

Description

Examples

Description

• 

The general form of an nth order ODE that is missing the dependent variable is:

missing_y_ode := F(x,'seq(diff(y(x),x$i),i=1..n)');

missing_y_odeFx,seqⅆiⅆxiyx,i=1..n

(1)
  

where F is an arbitrary function of its arguments. The order can be reduced by introducing a new variable p(x) = diff(y(x),x). If the reduced ODE can be solved for p(x), the solution to the original ODE is determined as a quadrature.

• 

The general form of an nth order ODE that is missing the independent variable is:

missing_x_ode := F(y(x),'seq(diff(y(x),x$i),i=1..n)');

missing_x_odeFyx,seqⅆiⅆxiyx,i=1..n

(2)
  

where F is an arbitrary function of its arguments. The transformation y' =p,y''=pp',y'''=p2p''+pp'2,...

  

yields a reduction of order. If the reduced ODE can be solved for p(y), the solution to the original ODE can be given implicitly as

x = Int(1/p(y),y) + _C1;

x=1pyⅆy+_C1

(3)
  

See Murphy, "Ordinary Differential Equations and their Solutions", 1960, sections B2(1,2), and C2(1,2).

Examples

withDEtools,odeadvisor

odeadvisor

(4)

_2nd_order_missing_x_odediffyx,x,x=lnyx+1diffyx,x

_2nd_order_missing_x_odeⅆ2ⅆx2yx=lnyx+1ⅆⅆxyx

(5)

odeadvisor_2nd_order_missing_x_ode

_2nd_order,_missing_x,_2nd_order,_exact,_nonlinear,_2nd_order,_reducible,_mu_x_y1,_2nd_order,_reducible,_mu_xy

(6)

solx2dsolve_2nd_order_missing_x_ode

solx2yx=c__1,` `yx1_aln_a+c__1ⅆ_axc__2=0

(7)

Explicit and implicit answers can be tested, in principle, using odetest:

mapodetest,solx2,_2nd_order_missing_x_ode

0,0

(8)

_2nd_order_missing_y_odediffyx,x,x=Fxdiffyx,x3

_2nd_order_missing_y_odeⅆ2ⅆx2yx=Fxⅆⅆxyx3

(9)

odeadvisor_2nd_order_missing_y_ode

_2nd_order,_missing_y,_2nd_order,_reducible,_mu_y_y1

(10)

soly2dsolve_2nd_order_missing_y_ode

soly2yx=1c__12Fxⅆxⅆx+c__2,yx=1c__12Fxⅆxⅆx+c__2

(11)

In the case of multiple answers it is convenient to "map" odetest as follows:

mapodetest,soly2,_2nd_order_missing_y_ode

0,0

(12)

The most general third order ODE missing x. This ODE cannot be solved to the end: its solution involves the solving of the most general second order ODE. However, its differential order can be reduced (see ?dsolve,ODESolStruc):

_3rd_order_missing_x_odediffyx,x,x,x=Fyx,diffyx,x,diffyx,x,x

_3rd_order_missing_x_odeⅆ3ⅆx3yx=Fyx,ⅆⅆxyx,ⅆ2ⅆx2yx

(13)

solx3dsolve_3rd_order_missing_x_ode

solx3yx=_awhereⅆ2ⅆ_a2_b_a_b_a2+ⅆⅆ_a_b_a2_b_aF_a,_b_a,ⅆⅆ_a_b_a_b_a=0,_a=yx,_b_a=ⅆⅆxyx,x=1_b_aⅆ_a+c__1,yx=_a

(14)

odeadvisor_3rd_order_missing_x_ode

_3rd_order,_missing_x,_3rd_order,_with_linear_symmetries

(15)

odetestsolx3,_3rd_order_missing_x_ode

0

(16)

The most general third order ODE missing y.

_3rd_order_missing_y_odediffyx,x,x,x=Fx,diffyx,x,diffyx,x,x

_3rd_order_missing_y_odeⅆ3ⅆx3yx=Fx,ⅆⅆxyx,ⅆ2ⅆx2yx

(17)

odeadvisor_3rd_order_missing_y_ode

_3rd_order,_missing_y,_3rd_order,_with_linear_symmetries

(18)

soly3dsolve_3rd_order_missing_y_ode

soly3yx=_b_aⅆ_a+c__1whereⅆ2ⅆ_a2_b_a=F_a,_b_a,ⅆⅆ_a_b_a,_a=x,_b_a=ⅆⅆxyx,x=_a,yx=_b_aⅆ_a+c__1

(19)

odetestsoly3,_3rd_order_missing_y_ode

0

(20)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

odeadvisor,types