Solving ODEs That Do Not Contain Either the Dependent or Independent Variable
Description
Examples
The general form of an nth order ODE that is missing the dependent variable is:
missing_y_ode := F(x,'seq(diff(y(x),x$i),i=1..n)');
missing_y_ode≔F⁡x,seq⁡ⅆiⅆxiy⁡x,i=1..n
where F is an arbitrary function of its arguments. The order can be reduced by introducing a new variable p(x) = diff(y(x),x). If the reduced ODE can be solved for p(x), the solution to the original ODE is determined as a quadrature.
The general form of an nth order ODE that is missing the independent variable is:
missing_x_ode := F(y(x),'seq(diff(y(x),x$i),i=1..n)');
missing_x_ode≔F⁡y⁡x,seq⁡ⅆiⅆxiy⁡x,i=1..n
where F is an arbitrary function of its arguments. The transformation y⁢' =p,y⁢''=p⁢p',y⁢'''=p2⁢p''+p⁢p'2,...
yields a reduction of order. If the reduced ODE can be solved for p(y), the solution to the original ODE can be given implicitly as
x = Int(1/p(y),y) + _C1;
x=∫1p⁡yⅆy+_C1
See Murphy, "Ordinary Differential Equations and their Solutions", 1960, sections B2(1,2), and C2(1,2).
with⁡DEtools,odeadvisor
odeadvisor
_2nd_order_missing_x_ode≔diff⁡y⁡x,x,x=ln⁡y⁡x+1⁢diff⁡y⁡x,x
_2nd_order_missing_x_ode≔ⅆ2ⅆx2y⁡x=ln⁡y⁡x+1⁢ⅆⅆxy⁡x
odeadvisor⁡_2nd_order_missing_x_ode
_2nd_order,_missing_x,_2nd_order,_exact,_nonlinear,_2nd_order,_reducible,_mu_x_y1,_2nd_order,_reducible,_mu_xy
solx2≔dsolve⁡_2nd_order_missing_x_ode
solx2≔y⁡x=c__1,∫` `y⁡x1_a⁢ln⁡_a+c__1ⅆ_a−x−c__2=0
Explicit and implicit answers can be tested, in principle, using odetest:
map⁡odetest,solx2,_2nd_order_missing_x_ode
0,0
_2nd_order_missing_y_ode≔diff⁡y⁡x,x,x=F⁡x⁢diff⁡y⁡x,x3
_2nd_order_missing_y_ode≔ⅆ2ⅆx2y⁡x=F⁡x⁢ⅆⅆxy⁡x3
odeadvisor⁡_2nd_order_missing_y_ode
_2nd_order,_missing_y,_2nd_order,_reducible,_mu_y_y1
soly2≔dsolve⁡_2nd_order_missing_y_ode
soly2≔y⁡x=∫1c__1−2⁢∫F⁡xⅆxⅆx+c__2,y⁡x=∫−1c__1−2⁢∫F⁡xⅆxⅆx+c__2
In the case of multiple answers it is convenient to "map" odetest as follows:
map⁡odetest,soly2,_2nd_order_missing_y_ode
The most general third order ODE missing x. This ODE cannot be solved to the end: its solution involves the solving of the most general second order ODE. However, its differential order can be reduced (see ?dsolve,ODESolStruc):
_3rd_order_missing_x_ode≔diff⁡y⁡x,x,x,x=F⁡y⁡x,diff⁡y⁡x,x,diff⁡y⁡x,x,x
_3rd_order_missing_x_ode≔ⅆ3ⅆx3y⁡x=F⁡y⁡x,ⅆⅆxy⁡x,ⅆ2ⅆx2y⁡x
solx3≔dsolve⁡_3rd_order_missing_x_ode
solx3≔y⁡x=_awhereⅆ2ⅆ_a2_b⁡_a⁢_b⁡_a2+ⅆⅆ_a_b⁡_a2⁢_b⁡_a−F⁡_a,_b⁡_a,ⅆⅆ_a_b⁡_a⁢_b⁡_a=0,_a=y⁡x,_b⁡_a=ⅆⅆxy⁡x,x=∫1_b⁡_aⅆ_a+c__1,y⁡x=_a
odeadvisor⁡_3rd_order_missing_x_ode
_3rd_order,_missing_x,_3rd_order,_with_linear_symmetries
odetest⁡solx3,_3rd_order_missing_x_ode
0
The most general third order ODE missing y.
_3rd_order_missing_y_ode≔diff⁡y⁡x,x,x,x=F⁡x,diff⁡y⁡x,x,diff⁡y⁡x,x,x
_3rd_order_missing_y_ode≔ⅆ3ⅆx3y⁡x=F⁡x,ⅆⅆxy⁡x,ⅆ2ⅆx2y⁡x
odeadvisor⁡_3rd_order_missing_y_ode
_3rd_order,_missing_y,_3rd_order,_with_linear_symmetries
soly3≔dsolve⁡_3rd_order_missing_y_ode
soly3≔y⁡x=∫_b⁡_aⅆ_a+c__1whereⅆ2ⅆ_a2_b⁡_a=F⁡_a,_b⁡_a,ⅆⅆ_a_b⁡_a,_a=x,_b⁡_a=ⅆⅆxy⁡x,x=_a,y⁡x=∫_b⁡_aⅆ_a+c__1
odetest⁡soly3,_3rd_order_missing_y_ode
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
odeadvisor,types
Download Help Document