quadrature - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Solving ODEs That Are in Quadrature Format

 

Description

Examples

Description

• 

An ODE is said to be in quadrature format when the following conditions are met:

  

1) the ODE is of first order and the right hand sides below depend only on x or y(x):

quadrature_1_x_ode := diff(y(x),x)=F(x);

quadrature_1_x_odeⅆⅆxyx=Fx

(1)

quadrature_1_y_ode := diff(y(x),x)=F(y(x));

quadrature_1_y_odeⅆⅆxyx=Fyx

(2)
  

2) the ODE is of high order and the right hand side depends only on x. For example:

quadrature_h_x_ode := diff(y(x),x,x,x,x)=F(x);

quadrature_h_x_odeⅆ4ⅆx4yx=Fx

(3)
  

where F is an arbitrary function. These ODEs are just integrals in disguised format, and are solved mainly by integrating both sides.

Examples

withDEtools,odeadvisor,symgen

odeadvisor,symgen

(4)

odeadvisorquadrature_1_x_ode

_quadrature

(5)

dsolvequadrature_1_x_ode

yx=Fxⅆx+c__1

(6)

odeadvisorquadrature_1_y_ode

_quadrature

(7)

dsolvequadrature_1_y_ode

x` `yx1F_aⅆ_a+c__1=0

(8)

From the point of view of their symmetries, all ODEs "missing y" have the symmetry [xi = 0, eta = 1], and all ODEs "missing x" have the symmetry [xi = 1, eta = 0] (see symgen);

symgenquadrature_1_x_ode

_ξ=0,_η=1

(9)

symgenquadrature_1_y_ode

_ξ=1,_η=0

(10)

See Also

DEtools

odeadvisor

dsolve

quadrature

linear

separable

Bernoulli

exact

homogeneous

homogeneousB

homogeneousC

homogeneousD

homogeneousG

Chini

Riccati

Abel

Abel2A

Abel2C

rational

Clairaut

dAlembert

sym_implicit

patterns

odeadvisor,types