Solving Second and Third Order ODEs using an Integrating Factor
Description
Examples
If, for an nth order ODE (n=2 or n=3) with the nth derivative isolated, there exists an integrating factor which depends only on the (n-1)st derivative, this integrating factor can be determined. The differential order of the ODE can then be reduced by one.
The general form of such an ODE of second order is:
reducible_ode_2 := diff(y(x),x,x)=diff(G(x,y(x)),x)/D(F)(diff(y(x),x));
reducible_ode_2≔ⅆ2ⅆx2y⁡x=D1⁡G⁡x,y⁡x+D2⁡G⁡x,y⁡x⁢ⅆⅆxy⁡xD⁡F⁡ⅆⅆxy⁡x
where F and G are arbitrary functions of their arguments. The integrating factor in this case is
mu := D(F)(diff(y(x),x));
μ≔D⁡F⁡ⅆⅆxy⁡x
The reduced ODE then becomes
F(diff(y(x),x)) = G(x,y(x)) + _C1;
F⁡ⅆⅆxy⁡x=G⁡x,y⁡x+_C1
The general form of this ODE of third order is:
reducible_ode_3 := diff(y(x),x$3)=diff(G(x,y(x),diff(y(x),x)),x)/D(F)(diff(y(x),x,x));
reducible_ode_3≔ⅆ3ⅆx3y⁡x=D1⁡G⁡x,y⁡x,ⅆⅆxy⁡x+D2⁡G⁡x,y⁡x,ⅆⅆxy⁡x⁢ⅆⅆxy⁡x+D3⁡G⁡x,y⁡x,ⅆⅆxy⁡x⁢ⅆ2ⅆx2y⁡xD⁡F⁡ⅆ2ⅆx2y⁡x
mu := D(F)(diff(y(x),x,x));
μ≔D⁡F⁡ⅆ2ⅆx2y⁡x
The reduced ODE is
F(diff(y(x),x,x)) = G(x,y(x),diff(y(x),x)) + _C1;
F⁡ⅆ2ⅆx2y⁡x=G⁡x,y⁡x,ⅆⅆxy⁡x+_C1
with⁡DEtools,odeadvisor
odeadvisor
ode1≔x⁢diff⁡y⁡x,x,x+2⁢diff⁡y⁡x,xx2−x⁢diff⁡y⁡x,x,x+2⁢diff⁡y⁡x,xx2⁢y⁡x2+2x⁢diff⁡y⁡x,x2y⁡x3=0
ode1≔x⁢ⅆ2ⅆx2y⁡x+2⁢ⅆⅆxy⁡xx2−x⁢ⅆ2ⅆx2y⁡x+2⁢ⅆⅆxy⁡xx2⁢y⁡x2+2⁢ⅆⅆxy⁡x2x⁢y⁡x3=0
odeadvisor⁡ode1
_Liouville,_2nd_order,_with_linear_symmetries,_2nd_order,_reducible,_mu_x_y1,_2nd_order,_reducible,_mu_xy
sol≔dsolve⁡ode1
sol≔y⁡x=c__2⁢x−c__1+c__22⁢x2−2⁢c__1⁢c__2⁢x+c__12−4⁢x22⁢x,y⁡x=−−c__2⁢x+c__22⁢x2−2⁢c__1⁢c__2⁢x+c__12−4⁢x2+c__12⁢x
Explicit or implicit results can be tested, in principle, using odetest. When testing multiple solutions, you can use map, as follows:
map⁡odetest,sol,ode1
0,0
A third order ODE
ode2≔1x⁢diff⁡y⁡x,x,x,xdiff⁡y⁡x,x,x=1x2⁢diff⁡y⁡x,x⁢x+y⁡xy⁡x
ode2≔ⅆ3ⅆx3y⁡xx⁢ⅆ2ⅆx2y⁡x=ⅆⅆxy⁡x⁢x+y⁡xx2⁢y⁡x
odeadvisor⁡ode2
_3rd_order,_with_linear_symmetries,_3rd_order,_reducible,_mu_y2,_3rd_order,_reducible,_mu_poly_yn
sol≔dsolve⁡ode2
sol≔y⁡x=c__2⁢AiryAi⁡−c__1⁢x+c__3⁢AiryBi⁡−c__1⁢x
See Also
DEtools
dsolve
quadrature
missing
reducible
linear_ODEs
exact_linear
exact_nonlinear
odeadvisor,types
Download Help Document