orthopoly
P
Legendre and Jacobi polynomials
Calling Sequence
Parameters
Description
Examples
P(n, a, b, x)
P(n, x)
n
-
non-negative integer
x
algebraic expression
a, b
rational numbers greater than -1 or nonrational algebraic expressions
The P(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.
In the case of only two arguments, P(n, x) computes the nth Legendre (spherical) polynomial which is equal to P(n, 0, 0, x).
These polynomials are orthogonal on the interval −1,1 with respect to the weight function w⁡x=1−xa⁢1+xb when a and b are greater than -1. They satisfy:
∫−11w⁡t⁢P⁡m,a,b,t⁢P⁡n,a,b,tⅆt=0n≠m2a+b+1⁢Γ⁡n+a+1⁢Γ⁡n+b+12⁢n+a+b+1⁢n!⁢Γ⁡n+a+b+1n=m
The Jacobi polynomials are undefined for negative integer values of a or b.
Jacobi polynomials satisfy the following recurrence relation:
P⁡0,a,b,x=1,
P⁡1,a,b,x=a2−b2+1+a2+b2⁢x,
P⁡n,a,b,x=2⁢n+a+b−1⁢a2−b2+2⁢n+a+b−2⁢2⁢n+a+b⁢x⁢P⁡n−1,a,b,x2⁢n⁢n+a+b⁢2⁢n+a+b−2−n+a−1⁢n+b−1⁢2⁢n+a+b⁢P⁡n−2,a,b,xn⁢n+a+b⁢2⁢n+a+b−2,for n>1.
with⁡orthopoly:
P⁡3,x
52⁢x3−32⁢x
P⁡30,13
18024734042221205891132094649
P⁡4,1,34,x
−1154+135⁢x4+4185⁢x−1264+48825⁢x−131024+380835⁢x−1432768
P⁡7,−23,74,12
−725899033738654705664
See Also
GAMMA
JacobiP
Legendre
NumberTheory[JacobiSymbol]
NumberTheory[LegendreSymbol]
Download Help Document