padic
expansion
p-adic expansion
Calling Sequence
Parameters
Description
Examples
expansion(ex, p, x, s)
expansion(ex, p, x)
ex
-
rational function
p
irreducible (or square-free) polynomial or 1/x (or infinity)
x
independent variable
s
(optional) a positive integer
This function computes the p-adic expansion of a rational function ex.
The parameter s sets the size of the resulting expression, where "size" means the number of terms of the p-adic expansion which will be printed. If omitted, it defaults to number 6.
A p-adic expansion is represented in Maple using the unevaluated function call PADIC() whose argument is another unevaluated function of the form p_adic() which has three arguments. The first argument is the polynomial p or 1/x. The second argument is the p-adic order at p. The third argument is the list of coefficients. For example,
PADIC⁡p_adic⁡x,0,1,−1,1,−1,1,−1
represents the p-adic expansion
1−x+x2−x3+x4−x5+O⁡x6
The print routine print/PADIC is used by the prettyprinter to format the p-adic expansion on screen.
The command with(padic,expansion) allows the use of the abbreviated form of this command.
with⁡padic:
expansion⁡x3+1x2+3⁢x+5,x,x
p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562531+p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562532x+p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562533x2+p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562534x3+p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562535x4+p_adic⁡x,0,15,−325,4125,128625,−4043125,5721562536x5+O⁡x6
expansion⁡x3+1x2+3⁢x+5,x2+2,x
p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904931+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904932x2+2+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904933x2+22+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904934x2+23+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904935x2+24+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904936x2+25+O⁡x2+26
expansion⁡x3+1x2+3⁢x+5,1x,x,5
p_adic⁡1x,−1,1,−3,4,4,−32311x+p_adic⁡1x,−1,1,−3,4,4,−32321x2+p_adic⁡1x,−1,1,−3,4,4,−32331x3+p_adic⁡1x,−1,1,−3,4,4,−32341x4+p_adic⁡1x,−1,1,−3,4,4,−32351x5+O⁡1x4
See Also
padic/functions
padic[lcoeffp]
padic[orderp]
Download Help Document