padic
orderp
the order of a p-adic expansion of a rational function
lcoeffp
the leading coefficient of a p-adic expansion of a rational function
Calling Sequence
Parameters
Description
Examples
orderp(ex, p, x)
lcoeffp(ex, p, x)
ex
-
rational function
p
irreducible (or square-free) polynomial or 1/x (or infinity)
x
independent variable
The orderp command computes the order at p of the p-adic expansion of a rational function ex in x.
The lcoeffp command computes the leading coefficient at p of the p-adic expansion of a rational function ex in x.
with⁡padic:
expansion⁡x3+1x2+3⁢x+5,x2+2,x
p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904931+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904932x2+2+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904933x2+22+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904934x2+23+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904935x2+24+p_adic⁡x2+2,0,−x3−13,49,−481+4⁢x81,4⁢x729−16729,−8⁢x6561−46561,−20⁢x59049+445904936x2+25+O⁡x2+26
orderp⁡x3+1x2+3⁢x+5,x2+2,x
0
lcoeffp⁡x3+1x2+3⁢x+5,x2+2,x
−x3−13
expansion⁡x3+1x2+3⁢x+5,1x,x
p_adic⁡1x,−1,1,−3,4,4,−32,76311x+p_adic⁡1x,−1,1,−3,4,4,−32,76321x2+p_adic⁡1x,−1,1,−3,4,4,−32,76331x3+p_adic⁡1x,−1,1,−3,4,4,−32,76341x4+p_adic⁡1x,−1,1,−3,4,4,−32,76351x5+p_adic⁡1x,−1,1,−3,4,4,−32,76361x6+O⁡1x5
orderp⁡x3+1x2+3⁢x+5,1x,x
−1
lcoeffp⁡x3+1x2+3⁢x+5,1x,x
1
See Also
padic[expansion]
Download Help Document