complexplot3d - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Graphics : Packages : plots : complexplot3d

plots 

  • complexplot3d
 

  • create a 3-D complex plot
 

 

Calling Sequence 

Parameters 

Description 

Examples 

Compatibility 

Calling Sequence 

complexplot3d([expr1, expr2], x=a..b, y=c..d) 

complexplot3d([f1, f2],  a.. b,  c.. d) 

complexplot3d(expr3, z=a + b*I..c + d*I) 

complexplot3d(f2, a + b*I..c + d*I) 

Parameters 

expr1, expr2 

- 

algebraic; expressions in parameters x and y 

f1, f2 

- 

procedures; functions to be plotted 

expr3 

- 

algebraic; expression in parameter z 

a, b, c, d 

- 

realcons; endpoints of parameter ranges 

Description 

  • The four different calling sequences to the complexplot3d function above all define plots in three-dimensional space for expressions or procedures mapping
 

 

  • For 2-D complex plots, see plots/complexplot.
 

  • For plotting functions from `*`(`^`(R, 2)); to `*`(`^`(R, 2)); , complexplot3d plots the first component while coloring the graphic using the second component.
 

  • For plotting functions from C; to C; , complexplot3d plots the magnitude of the function while coloring the resulting surface using the argument of the function.
 

  • The first two calling sequences plot expressions and procedures, respectively, from `*`(`^`(R, 2)); to `*`(`^`(R, 2)); . In the second case f1 and f2 take two arguments and return a real value. The form of the range specifications determine whether an expression or a procedure is to be plotted. The last two calling sequences plot expressions and procedures, respectively, from C; to C; .
 

  • The range components a, b, c, and d must evaluate to real constants. Note that operator notation is used in the second and fourth calls, that is, the procedure name is given without parameters specified, and the ranges must be given simply in the form a..b, rather than as an equation.
 

  • The complex plots colored by argument have a color bar displayed by default. It can be suppressed by adding colorbar=false to the arguments.
 

  • Any additional arguments are interpreted as options as described in the plot3d/option help page.  For example, the option grid = [m, n]; where m and n are positive integers specifies that the plot is to be constructed on an m by n grid instead of on the default 25 by 25 grid.
 

Examples 

> with(plots); -1
 

Plot a complex procedure: 

> f := proc (z) options operator, arrow; sec(z) end proc;
 

f := proc (z) options operator, arrow; sec(z) end proc (1)
 

> complexplot3d(f, `+`(`-`(2), `-`(`*`(2, `*`(I)))) .. `+`(2, `*`(2, `*`(I))));
 

Image
 

Plot an expression from `*`(`^`(R, 2)); to `*`(`^`(R, 2)); , where the plot is of the first component colored by the second component: 

> complexplot3d([`+`(`*`(`^`(x, 2)), `-`(`*`(`^`(y, 2)))), `+`(`*`(2, `*`(x, `*`(y))))], x = -2 .. 2, y = -2 .. 2);
 

Image
 

Repeat the previous example using operator form. 

> f1 := proc (x, y) options operator, arrow; `+`(`*`(`^`(x, 2)), `-`(`*`(`^`(y, 2)))) end proc; 1f2 := proc (x, y) options operator, arrow; `+`(`*`(2, `*`(y, `*`(x)))) end proc;
 

 

f1 := proc (x, y) options operator, arrow; `+`(`*`(`^`(x, 2)), `-`(`*`(`^`(y, 2)))) end proc
f2 := proc (x, y) options operator, arrow; `+`(`*`(2, `*`(y, `*`(x)))) end proc (2)
 

> complexplot3d([f1, f2], -2 .. 2, -2 .. 2);
 

Image
 

Plot an image created from Newton's iteration: 

> f := proc (z) options operator, arrow; `+`(z, `-`(`/`(`*`(`/`(1, 3), `*`(`+`(`*`(`^`(z, 3)), `-`(2)))), `*`(`^`(z, 2))))) end proc;
 

f := proc (z) options operator, arrow; `+`(z, `-`(`/`(`*`(`/`(1, 3), `*`(`+`(`*`(`^`(z, 3)), `-`(2)))), `*`(`^`(z, 2))))) end proc (3)
 

> complexplot3d(`@@`(f, 4), `+`(`-`(3), `-`(`*`(3, `*`(I)))) .. `+`(3, `*`(3, `*`(I))), view = -4 .. 4, grid = [50, 50]);
 

Image
 

Plot abs(f(z)); , where z = `*`(r, `*`(exp(`*`(I, `*`(theta))))); and f(z) = `/`(`*`(z), `*`(`+`(exp(z), `-`(1)))); , in cylindrical coordinates, with r ranging from 0 to 10 and theta from 0 to `+`(`*`(2, `*`(Pi))); . 

> g := proc(z) local w; w := Re(z)*exp(Im(z)*I); w/(exp(w)-1) end proc:
 

> changecoords(complexplot3d(g, 0 .. `+`(10, `*`(`*`(2, `*`(I)), `*`(Pi))), axes = boxed), cylindrical);
 

Image
 

Other colorings are supported with the colorscheme option 

> complexplot3d(LambertW(z), z = `+`(`-`(1), `-`(I)) .. `+`(1, I), colorscheme =
 

Image
 

The command to create the plot from the Plotting Guide is 

> complexplot3d(sec(z), z = `+`(`-`(2), `-`(`*`(2, `*`(I)))) .. `+`(2, `*`(2, `*`(I))), grid = [10, 10], colorbar = false);
 

Image
 

Compatibility 

  • The plots[complexplot3d] command was updated in Maple 2024.
 

  • The colorbar option was introduced in Maple 2024.
 

  • For more information on Maple 2024 changes, see Updates in Maple 2024.
 

See Also 

plot3d/option 

plots/complexplot