pochhammer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


pochhammer

general pochhammer function

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

pochhammer(z, a)

Parameters

z

-

expression

a

-

expression

Description

• 

The pochhammer symbol is defined for a positive integer n and complex number z as

pochhammerz,n=zz+1...z+n1

  

This is extended analytically to complex n by using the formula

  

 

pochhammerz,a=Γz+aΓz

• 

At all points z,a such that z and z+a are positive integers, this is equivalent to:

pochhammerz,a=limt0Γz+a+tΓz+t

  

In the case that z is a non-positive integer, pochhammer(z,a) is defined by this limit.

  

In the case that both z and z+a are non-positive integers, Maple also signals the invalid_operation numeric event, allowing the user to control this singular behavior by catching the event. See numeric_events for more information.

Examples

pochhammer5,3

210

(1)

pochhammerz,2

pochhammerz,2

(2)

pochhammerz,3

1pochhammer3+z,3

(3)

pochhammer2,I

Γ2+I

(4)

NumericStatusinvalid_operation=false:

pochhammer3,2

6

(5)

NumericStatusinvalid_operation=false

invalid_operation=true

(6)

pochhammer0,0

1

(7)

NumericStatusinvalid_operation

true

(8)

diffpochhammera,x,x

pochhammera,xΨx+a

(9)

diffpochhammera,x,a

pochhammera,xΨx+aΨa

(10)

seriespochhammera,x,x,3

1+Ψax+Ψ1,a2+Ψa22x2+Ox3

(11)

pochhammerx,5

pochhammerx,5

(12)

expand

x5+10x4+35x3+50x2+24x

(13)

pochhammer2,13

8π327Γ23

(14)

evalf

1.190639350

(15)

pochhammer3.7+2.2I,1.5+2.7I

−0.0005620896042+0.01961129135I

(16)

convertpochhammera,x,Γ

Γx+aΓa

(17)

convertpochhammera,x,binomial

a+x1a1x!

(18)

convertpochhammera,x,factorial

a+x1!a1!

(19)

See Also

convert

diff

evalf

expand

GAMMA

initialfunctions

NumericStatus

series