solve/parametrized
parametrize the solutions of a scalar functions of two variables
Calling Sequence
Parameters
Description
Examples
References
solve(eqn, varlist)
eqn
-
single equation in two variables
varlist
list of two names applied to a parameter (for example, x⁡t,y⁡t) or two equations of the form x⁡t=x0,y⁡t=y0 giving the parametrization point. The desired name of the parameter to use in the solution (for example, t) appears as an argument to the variable names. Note that t=0 corresponds to x0,y0.
The solve(eqn,varlist) command substitutes y=y0+t⁢x−x0 into the given function and tries to solve the resulting equation (set equal to zero) for x as a function of t. If successful, this gives a parametrized solution of the original equation, in that f⁡x⁡t,y0+t⁢x⁡t−x0=0.
Note: This command does not find solutions of the form x=a⁢t+x0,y=b⁢t+y0. It can sometimes find parametrized solutions of nonpolynomial equations, and can find nonrational parametrizations of polynomial equations. To find rational parametrizations of polynomial systems, use the command algcurves[parametrization].
solve⁡u2+v2−1,u⁡s=−1,v⁡s=0
u=s2−1s2+1,v=2⁢ss2+1
tacnode≔2⁢x4−3⁢x2⁢y+y4−2⁢y3+y2
tacnode≔2⁢x4+y4−3⁢x2⁢y−2⁢y3+y2
tacsol≔solve⁡tacnode,x⁡t,y⁡t
tacsol≔x=−−2⁢t2+12⁢t2+1−3⁢t2⁢t4+2,y=−t2⁢−2⁢t2+12⁢t2+1−32⁢t4+2,x=2⁢t2+3+12⁢t2+1⁢t2⁢t4+2,y=t2⁢2⁢t2+3+12⁢t2+12⁢t4+2
solve⁡xx−yy,x⁡t,y⁡t
x=ⅇln⁡1t⁢tt−1,y=t⁢ⅇln⁡1t⁢tt−1
Corless, Robert M. Essential Maple 7. Chap. 3. Springer-Verlag.
Hardy, G. H. Pure Mathematics. Cambridge University Press, 1952.
See Also
algcurves[parametrization]
solve
Download Help Document