tensor
Killing_eqns
compute component expressions for Killings equations
Calling Sequence
Parameters
Description
Examples
Killing_eqns( T, coord, Cf2)
T
-
symmetric covariant tensor
coord
list of coordinate names
Cf2
Christoffel symbols of the second kind
Important: The tensor package has been deprecated. Use the superseding packages DifferentialGeometry and Physics instead.
The function Killing_eqns(T, coord, Cf2 ) computes the expressions for Killing's equations for each component of the totally symmetric covariant tensor T. Specifically, the symmetric part of the covariant derivative of T is computed and returned as a tensor_type. The components of T satisfy Killing's equations if all of the components of the result are zero. Note that the rank of the result is one more than that of T.
This routine is useful in two ways: first, as a means of verifying that a tensor satisfies Killing's equations, and second, as a way of generating the differential equations for any unknown components of a symmetric tensor which is to satisfy Killing's equations.
T must be of rank 1 or greater. If T is of second rank or more, the component array of T must use Maple's symmetric indexing function (since T must be symmetric).
Cf2 should be indexed using the cf2 indexing function provided by the tensor package. It can be computed using the Christoffel2 routine.
Simplification: This routine uses the `tensor/cov_diff/simp` and `tensor/lin_com/simp` routines for simplification purposes. The simplification routines are used indirectly by the symmetrize and cov_diff procedures as they are called by Killing_eqns. By default, `tensor/cov_diff/simp` and `tensor/lin_com/simp` are initialized to the `tensor/simp` routine. It is recommended that these routines be customized to suit the needs of the particular problem.
with⁡tensor:
Generate the Killing equation expressions for an arbitrary vector in the geometry of Euclidean 3-space using polar coordinates: First, compute the Christoffel symbols of the second kind:
coord≔r,θ,φ:
g_compts≔array⁡symmetric,sparse,1..3,1..3,1,1=1,2,2=r2,3,3=r2⁢sin⁡θ2:
g≔create⁡−1,−1,eval⁡g_compts
g≔table⁡index_char=−1,−1,compts=1000r2000r2⁢sin⁡θ2
ginv≔invert⁡g,detg:
d1g≔d1metric⁡g,coord:d2g≔d2metric⁡d1g,coord:
Cf1≔Christoffel1⁡d1g:
Cf2≔Christoffel2⁡ginv,Cf1:
Next, define the arbitrary vector field:
V≔create⁡−1,array⁡v1⁡r,θ,φ,v2⁡r,θ,φ,v3⁡r,θ,φ
V≔table⁡index_char=−1,compts=v1⁡r,θ,φv2⁡r,θ,φv3⁡r,θ,φ
Now compute the Killing equation expressions:
KV≔Killing_eqns⁡V,coord,Cf2
KV≔table⁡index_char=−1,−1,compts=∂∂rv1⁡r,θ,φ−−∂∂θv1⁡r,θ,φ⁢r−∂∂rv2⁡r,θ,φ⁢r+2⁢v2⁡r,θ,φ2⁢r∂∂φv1⁡r,θ,φ⁢r+∂∂rv3⁡r,θ,φ⁢r−2⁢v3⁡r,θ,φ2⁢r−−∂∂θv1⁡r,θ,φ⁢r−∂∂rv2⁡r,θ,φ⁢r+2⁢v2⁡r,θ,φ2⁢r∂∂θv2⁡r,θ,φ+r⁢v1⁡r,θ,φ∂∂φv2⁡r,θ,φ2−cot⁡θ⁢v3⁡r,θ,φ+∂∂θv3⁡r,θ,φ2∂∂φv1⁡r,θ,φ⁢r+∂∂rv3⁡r,θ,φ⁢r−2⁢v3⁡r,θ,φ2⁢r∂∂φv2⁡r,θ,φ2−cot⁡θ⁢v3⁡r,θ,φ+∂∂θv3⁡r,θ,φ2∂∂φv3⁡r,θ,φ+r⁢sin⁡θ2⁢v1⁡r,θ,φ+sin⁡2⁢θ⁢v2⁡r,θ,φ2
Now try it for an arbitrary symmetric 0, 2-tensor:
t≔array⁡symmetric,1..3,1..3:
forito3doforjfromito3doti,j≔cat⁡t,i,j⁡r,θ,φenddoenddo;T≔create⁡−1,−1,eval⁡t
t33⁡r,θ,φ
T≔table⁡index_char=−1,−1,compts=t11⁡r,θ,φt12⁡r,θ,φt13⁡r,θ,φt12⁡r,θ,φt22⁡r,θ,φt23⁡r,θ,φt13⁡r,θ,φt23⁡r,θ,φt33⁡r,θ,φ
KT≔Killing_eqns⁡T,coord,Cf2
KT≔table⁡index_char=−1,−1,−1,compts=array⁡symmetric,1..3,1..3,1..3,1,1,1=∂∂rt11⁡r,θ,φ,1,1,2=2⁢∂∂rt12⁡r,θ,φ⁢r+∂∂θt11⁡r,θ,φ⁢r−4⁢t12⁡r,θ,φ3⁢r,1,1,3=2⁢∂∂rt13⁡r,θ,φ⁢r+∂∂φt11⁡r,θ,φ⁢r−4⁢t13⁡r,θ,φ3⁢r,1,2,1=2⁢∂∂rt12⁡r,θ,φ⁢r+∂∂θt11⁡r,θ,φ⁢r−4⁢t12⁡r,θ,φ3⁢r,1,2,2=2⁢r2⁢t11⁡r,θ,φ+∂∂rt22⁡r,θ,φ⁢r+2⁢∂∂θt12⁡r,θ,φ⁢r−4⁢t22⁡r,θ,φ3⁢r,1,2,3=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,1,3,1=2⁢∂∂rt13⁡r,θ,φ⁢r+∂∂φt11⁡r,θ,φ⁢r−4⁢t13⁡r,θ,φ3⁢r,1,3,2=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,1,3,3=2⁢r2⁢sin⁡θ2⁢t11⁡r,θ,φ+sin⁡2⁢θ⁢t12⁡r,θ,φ⁢r+2⁢∂∂φt13⁡r,θ,φ⁢r−4⁢t33⁡r,θ,φ+∂∂rt33⁡r,θ,φ⁢r3⁢r,2,1,1=2⁢∂∂rt12⁡r,θ,φ⁢r+∂∂θt11⁡r,θ,φ⁢r−4⁢t12⁡r,θ,φ3⁢r,2,1,2=2⁢r2⁢t11⁡r,θ,φ+∂∂rt22⁡r,θ,φ⁢r+2⁢∂∂θt12⁡r,θ,φ⁢r−4⁢t22⁡r,θ,φ3⁢r,2,1,3=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,2,2,1=2⁢r2⁢t11⁡r,θ,φ+∂∂rt22⁡r,θ,φ⁢r+2⁢∂∂θt12⁡r,θ,φ⁢r−4⁢t22⁡r,θ,φ3⁢r,2,2,2=∂∂θt22⁡r,θ,φ+2⁢r⁢t12⁡r,θ,φ,2,2,3=∂∂φt22⁡r,θ,φ3−4⁢cot⁡θ⁢t23⁡r,θ,φ3+2⁢∂∂θt23⁡r,θ,φ3+2⁢t13⁡r,θ,φ⁢r3,2,3,1=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,2,3,2=∂∂φt22⁡r,θ,φ3−4⁢cot⁡θ⁢t23⁡r,θ,φ3+2⁢∂∂θt23⁡r,θ,φ3+2⁢t13⁡r,θ,φ⁢r3,2,3,3=2⁢r⁢sin⁡θ2⁢t12⁡r,θ,φ3+2⁢sin⁡θ⁢cos⁡θ⁢t22⁡r,θ,φ3+2⁢∂∂φt23⁡r,θ,φ3−4⁢cot⁡θ⁢t33⁡r,θ,φ3+∂∂θt33⁡r,θ,φ3,3,1,1=2⁢∂∂rt13⁡r,θ,φ⁢r+∂∂φt11⁡r,θ,φ⁢r−4⁢t13⁡r,θ,φ3⁢r,3,1,2=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,3,1,3=2⁢r2⁢sin⁡θ2⁢t11⁡r,θ,φ+sin⁡2⁢θ⁢t12⁡r,θ,φ⁢r+2⁢∂∂φt13⁡r,θ,φ⁢r−4⁢t33⁡r,θ,φ+∂∂rt33⁡r,θ,φ⁢r3⁢r,3,2,1=−2⁢cot⁡θ⁢t13⁡r,θ,φ⁢r+∂∂φt12⁡r,θ,φ⁢r−4⁢t23⁡r,θ,φ+∂∂θt13⁡r,θ,φ⁢r+∂∂rt23⁡r,θ,φ⁢r3⁢r,3,2,2=∂∂φt22⁡r,θ,φ3−4⁢cot⁡θ⁢t23⁡r,θ,φ3+2⁢∂∂θt23⁡r,θ,φ3+2⁢t13⁡r,θ,φ⁢r3,3,2,3=2⁢r⁢sin⁡θ2⁢t12⁡r,θ,φ3+2⁢sin⁡θ⁢cos⁡θ⁢t22⁡r,θ,φ3+2⁢∂∂φt23⁡r,θ,φ3−4⁢cot⁡θ⁢t33⁡r,θ,φ3+∂∂θt33⁡r,θ,φ3,3,3,1=2⁢r2⁢sin⁡θ2⁢t11⁡r,θ,φ+sin⁡2⁢θ⁢t12⁡r,θ,φ⁢r+2⁢∂∂φt13⁡r,θ,φ⁢r−4⁢t33⁡r,θ,φ+∂∂rt33⁡r,θ,φ⁢r3⁢r,3,3,2=2⁢r⁢sin⁡θ2⁢t12⁡r,θ,φ3+2⁢sin⁡θ⁢cos⁡θ⁢t22⁡r,θ,φ3+2⁢∂∂φt23⁡r,θ,φ3−4⁢cot⁡θ⁢t33⁡r,θ,φ3+∂∂θt33⁡r,θ,φ3,3,3,3=∂∂φt33⁡r,θ,φ+2⁢r⁢sin⁡θ2⁢t13⁡r,θ,φ+sin⁡2⁢θ⁢t23⁡r,θ,φ
See Also
tensor(deprecated)
tensor(deprecated)/cov_diff
tensor(deprecated)[Christoffel2]
tensor(deprecated)[simp]
tensor(deprecated)[symmetrize]
Download Help Document