tensor(deprecated)/Ricciscalar - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : tensor(deprecated)/Ricciscalar

tensor

  

Ricciscalar

  

compute the Ricci scalar

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Ricciscalar(ginv, Ricci)

Parameters

ginv

-

rank two tensor_type of character [-1,-1] representing the contravariant metric tensor; specifically, ginvcomptsi,jgij

Ricci

-

rank two tensor_type of character [-1,-1] representing the COVARIANT Ricci tensor; specifically, Ricci[compts][i,j] := R_{ij}

Description

Important: The tensor package has been deprecated. Use the superseding commands DifferentialGeometry[Tensor][RicciScalar] and Physics[Ricci] instead.

• 

The result of this routine is the Ricci scalar (note it is represented by a rank zero tensor_type).

• 

Both ginv and Ricci should use the Maple symmetric indexing function for their components.

• 

Simplification:  This routine uses the `tensor/Ricciscalar/simp` routine for simplification purposes.  The simplification routine is applied to each component of result after it is computed.  By default, `tensor/Ricciscalar/simp` is initialized to the `tensor/simp` routine.  It is recommended that the `tensor/Ricciscalar/simp` routine be customized to suit the needs of the particular problem.

• 

This function is part of the tensor package, and so can be used in the form Ricciscalar(..) only after performing the command with(tensor) or with(tensor, Ricciscalar).  The function can always be accessed in the long form tensor[Ricciscalar](..).

Examples

Important: The tensor package has been deprecated. Use the superseding commands DifferentialGeometry[Tensor][RicciScalar] and Physics[Ricci] instead.

withtensor:

Define the coordinate variables and the covariant components of the Schwarzchild metric.

coordt,r,θ,φ:

g_comptsarraysymmetric,sparse,1..4,1..4:

g_compts1,112mr:g_compts2,21g_compts1,1:

g_compts3,3r2:g_compts4,4r2sinθ2:

gcreate1,1,evalg_compts

gtableindex_char=−1,−1,compts=12mr0000112mr0000r20000r2sinθ2

(1)

Compute the Ricci scalar.

ginvinvertg,detg:

D1gd1metricg,coord:D2gd2metricD1g,coord:

Cf1Christoffel1D1g:

RMNRiemannginv,D2g,Cf1:

RICCIRicciginv,RMN:

RSRicciscalarginv,RICCI

RStableindex_char=,compts=4r2

(2)

You can also view the result using the tensor package function displayGR.

See Also

DifferentialGeometry[Tensor][RicciScalar]

Physics[Christoffel]

Physics[D_]

Physics[d_]

Physics[Einstein]

Physics[g_]

Physics[LeviCivita]

Physics[Ricci]

Physics[Riemann]

Physics[Weyl]

tensor(deprecated)

tensor(deprecated)[displayGR]

tensor(deprecated)[invert]

tensor(deprecated)[Ricci]

tensor(deprecated)[simp]

tensor(deprecated)[tensorsGR]