tensor
geodesic_eqns
generate the Euler-Lagrange equations for the geodesic curves
Calling Sequence
Parameters
Description
Examples
geodesic_eqns(coord, param, Cf2)
coord
-
list of coordinate names
param
name of the variable to parametrize the curves with
Cf2
Christoffel symbols of the second kind
Important: The tensor package has been deprecated. Use the superseding commands DifferentialGeometry[Tensor][GeodesicEquations] and Physics[Geodesics] instead.
The function geodesic_eqns(coord, Tau, Cf2) generates (but does not solve) the Euler-Lagrange equations of the geodesics for a metric with Christoffel symbols of the second kind Cf2 and coordinate variables coord. The equations are written in terms of the coordinate variable names as functions of the given parameter Tau. They are returned in the format of a list of equations.
Cf2 should be indexed using the cf2 indexing function provided by the tensor package. It can be computed using the Christoffel2 routine.
with⁡tensor:
Determine the geodesic equations for the Poincare half-plane. The coordinates are:
coord≔u,v
The metric is:
g_compts≔array⁡symmetric,sparse,1..2,1..2,1,1=1v2,2,2=1v2:
g≔create⁡−1,−1,eval⁡g_compts
g≔table⁡index_char=−1,−1,compts=1v2001v2
ginv≔invert⁡g,detg:
d1g≔d1metric⁡g,coord:d2g≔d2metric⁡d1g,coord:
Cf1≔Christoffel1⁡d1g:
Cf2≔Christoffel2⁡ginv,Cf1:
displayGR⁡Christoffel2,Cf2
The Christoffel Symbols of the Second Kind
non-zero components :
{1,12}=−1v
{2,11}=1v
{2,22}=−1v
Now generate the geodesic equations:
eqns≔geodesic_eqns⁡coord,t,Cf2
eqns≔ⅆ2ⅆt2u⁡t−2⁢ⅆⅆtu⁡t⁢ⅆⅆtv⁡tv=0,ⅆ2ⅆt2v⁡t+ⅆⅆtu⁡t2v−ⅆⅆtv⁡t2v=0
How about Euclidean 3-space in Cartesian coordinates?
coord≔x,y,z
g_compts≔array⁡symmetric,sparse,1..3,1..3,1,1=1,2,2=1,3,3=1:
g≔table⁡index_char=−1,−1,compts=100010001
None
eqns≔ⅆ2ⅆt2x⁡t=0,ⅆ2ⅆt2y⁡t=0,ⅆ2ⅆt2z⁡t=0
map⁡eval,subs⁡x⁡t=a⁢t+b,y⁡t=c⁢t+e,z⁡t=f⁢t+h,eqns
0=0
and in spherical-polar coordinates?
coord≔r,θ,φ
g_compts≔array⁡symmetric,sparse,1..3,1..3,1,1=1,2,2=r2,3,3=r2⁢sin⁡θ2:
g≔table⁡index_char=−1,−1,compts=1000r2000r2⁢sin⁡θ2
{1,22}=−r
{1,33}=−r⁢sin⁡θ2
{2,12}=1r
{2,33}=−sin⁡2⁢θ2
{3,13}=1r
{3,23}=cot⁡θ
eqns≔ⅆ2ⅆt2φ⁡t+2⁢ⅆⅆtr⁡t⁢ⅆⅆtφ⁡tr+2⁢cot⁡θ⁢ⅆⅆtθ⁡t⁢ⅆⅆtφ⁡t=0,ⅆ2ⅆt2r⁡t−r⁢ⅆⅆtθ⁡t2−r⁢sin⁡θ2⁢ⅆⅆtφ⁡t2=0,ⅆ2ⅆt2θ⁡t+2⁢ⅆⅆtr⁡t⁢ⅆⅆtθ⁡tr−sin⁡2⁢θ⁢ⅆⅆtφ⁡t22=0
See Also
DifferentialGeometry[Tensor][GeodesicEquations]
dsolve
Physics[Geodesics]
tensor(deprecated)
tensor(deprecated)[Christoffel2]
tensor(deprecated)[indexing]
Download Help Document