Matlab Connectivity - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 16 : Matlab Connectivity

MATLAB® Connectivity in Maple 16

 

Maple provides several different connectivity options for MATLAB®.  Some of these options have been enhanced for Maple 16.

 

Two-Way Integration between Maple and MATLAB®

Matlab Link

MATLAB® Code Generation

MATLAB® to Maple code translation

Two-Way Integration between Maple and MATLAB®

Maple commands, packages, assistants, and even the whole user interface is accessible from MATLAB®.  Using MATLAB® as your main interface you can use one of more than 200 native MATLAB® commands to do symbolic computation linking seamlessly to Maple's math engine.  Launch the Maple graphical interface from MATLAB® and interact with both programs as they share the same variables and state.  

 

The most basic symbolic object is a symbol. To start using Maple, create a sym object, x, in MATLAB®.  More complicated expressions can then be formed using your declared symbolic variable, x.

 

>> x = sym('x')

 x =

                                        x

 

>> x^3+cos(2*x)-1

 

ans =

 

                                3

                               x  + cos(2 x) - 1

 

Symbolic expressions and equations can then, among other things, be differentiated, integrated, factored, and solved exactly using MATLAB® front-ends to Maple commands.   

 

>> diff(x^3)

 

ans =

 

                                        2

                                     3 x

 

>> int(3*x^2)

 

ans =

 

                                       3

                                      x

 

>> factor(x^4+10*x^3+35*x^2+50*x+24)

 

ans =

 

                        (x + 4) (x + 3) (x + 2) (x + 1)

 

>> expand(ans)

 

ans =

 

                         4       3       2

                        x  + 10 x  + 35 x  + 50 x + 24

 

>> syms x y z

>> solve( 3*x+1*y+4*z-5, 8*x+19*y+11*z-94, x+y/4+z-11)          

 

ans =

 

        x: 39

        y: 72/13

        z: -382/13

 

 

New in Maple 16 is the ability to easily create symbolic matrices.  The sym command now accepts options for specifying the size and format of a matrix to be filled with symbolic entries.  

 

>> A = sym('A',[3 3])

 

A =

 

                            [A1_1    A1_2    A1_3]

                            [                    ]

                            [A2_1    A2_2    A2_3]

                            [                    ]

                            [A3_1    A3_2    A3_3]

 

 

The resulting matrices can be used to compute exact symbolic answers.  For example, the determinant of the above matrix as an equation can be calculated like this:

 

>> det(A)

 

ans =

 

  A1_1 A2_2 A3_3 - A1_1 A2_3 A3_2 + A2_1 A3_2 A1_3 - A2_1 A1_2 A3_3

 

         + A3_1 A1_2 A2_3 - A3_1 A2_2 A1_3

 

 

The format of the matrix entries can be customized using a string template.  Standard operations like matrix multiplication are known to the package and overloaded accordingly.

 

>> B = sym('B%d%d',[2 3])

 

B =

 

                              [B11    B12    B13]

                              [                 ]

                              [B21    B22    B23]

>> B * A

 

ans =

 

        [B11 A1_1 + B12 A2_1 + B13 A3_1 , B11 A1_2 + B12 A2_2 + B13 A3_2 ,

 

        B11 A1_3 + B12 A2_3 + B13 A3_3]

 

        [B21 A1_1 + B22 A2_1 + B23 A3_1 , B21 A1_2 + B22 A2_2 + B23 A3_2 ,

 

        B21 A1_3 + B22 A2_3 + B23 A3_3]

 

Matlab Link

The Matlab link lets you call on MATLAB® to perform calculations from the Maple environment, and return the results to Maple for further analysis.  

 

withMatlab

AddTranslator,FromMFile,FromMatlab,chol,closelink,defined,det,dimensions,eig,evalM,fft,getvar,inv,lu,ode15s,ode45,openlink,qr,setvar,size,square,transpose

(2.1)

evalMwhy(16)

It should be obvious.


 

Maple commands seamlessly accept both MATLAB® and Maple data structures, and call MATLAB® behind the scenes to perform the calculation.

 

Maple 16 includes international language support.  It also keeps current with the latest versions, of MATLAB®,  R2011a and R2011b.

 

MATLAB® Code Generation

Maple’s code generation feature can generate MATLAB® code from Maple expressions and procedures.

 

withCodeGeneration:

Matlabx+yz2xz,resultname=w

w = x + y * z - 2 * x * z;

 

Click to learn more about code generation in Maple.

 

MATLAB® to Maple code translation

The FromMatlab command  helps you to convert your existing MATLAB® code into Maple syntax.  This can be used in new or expanded projects, or simply to see how a command you know from MATLAB® might be reproduced in Maple.

 

restart

withMatlab:

FromMatlab[ 1 2 ; 3 4]

Evaluating:
Matrix([[1, 2], [3, 4]] );


FromMatlabA .* B

Evaluating:

A *~ B;

AB

(4.1)

mfile  " function x = mysumvarargin                            x = sumvarargin:":

FromMatlabmfile, evaluate=false:

 

See ?FromMatlab for further information.