Advanced Mathematics - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : System : Information : Updates : Maple 18 : Advanced Mathematics

Advanced Math

 

Maple 18 includes numerous cutting-edge updates in a variety of branches of mathematics:

 

Fractals

Graph Theory

Group Theory

Numerical Integration with Cuba Library

QDifferenceEquations

RootOf

Fractals

Maple 18 features a new package for generating Fractals.  This includes various fractal generators, such as BurningShip, Julia, Lyapunov, Mandelbrot, and Newton. For more, see Fractals in Maple 18.

BurningShip

Julia

Lyapunov

Mandelbrot

Newton

Graph Theory

Several improvements and enhancements have been made to the GraphTheory package including the new Latex command for generating code for displaying a graph using the LaTeX picture environment.

 

For more, see Updates to Graph Theory.

 

Group Theory

There are numerous improvements for Group Theory, including a new library of Perfect Groups. Other new commands include:

• 

AbelianInvariants: Compute the Abelian invariants of a finitely presented group.

• 

CycleIndexPolynomial: Return the degree of a permutation group.

• 

PresentationComplexity: Return a measure of the complexity of a presentation of a finitely presented group.

• 

Simplify: Simplify the presentation for a group.

 

G  GroupTheory:-Group Perm 1,2 , Perm 2,3,4  ;

G:=1,2,2,3,4

(3.1)

GroupTheory:-CycleIndexPolynomial G,  a, b, c, d  ;

124a4+18b2+14b+13c+14d

(3.2)

For more details, see Updates to Group Theory.

Numerical Integration with Cuba Library

Maple 18 provides more methods for numerical integration, adding four routines for high-dimensional numerical integration that rely on the Cuba library for multidimensional numerical integration. For more details, see the help page for the Cuba library.

 

Example

spikes  Statistics:-SampleUniform0, 1, 6, 4;

integrand:=addmulln1.7xispikesi,j,i=1..6,j=1..4

integrand:=ln1.7x10.814723686393179ln1.7x20.905791937075619ln1.7x30.126986816293506ln1.7x40.913375856139019ln1.7x50.632359246225410ln1.7x60.0975404049994095+ln1.7x10.278498218867048ln1.7x20.546881519204984ln1.7x30.957506835434298ln1.7x40.964888535199277ln1.7x50.157613081677548ln1.7x60.970592781760616+ln1.7x10.957166948242946ln1.7x20.485375648722841ln1.7x30.800280468888800ln1.7x40.141886338627215ln1.7x50.421761282626275ln1.7x60.915735525189067+ln1.7x10.792207329559554ln1.7x20.959492426392903ln1.7x30.655740699156587ln1.7x40.0357116785741896ln1.7x50.849129305868777ln1.7x60.933993247757551

(4.1)

region  seqxi = 0 .. 1, i = 1 .. 6;

region:=x1=0..1,x2=0..1,x3=0..1,x4=0..1,x5=0..1,x6=0..1

(4.2)

intintegrand, region, 'numeric', 'epsilon' = .001, 'method = _CubaSuave', 'methodoptions = flatness = 1, nnew = 10000';

1.52943702315794

(4.3)

QDifferenceEquations

The QDifferenceEquations package includes two new commands for working with q-difference operators.

Lx21Qq2x21:

 

• 

Closure computes the closure in the ring of linear q-difference operators with polynomial coefficients.

CQDifferenceEquations:-ClosureL,Q,x,q

C:=x21Qq2x2+1,qx1Q2+q3x+q2+qx+1Qqx+1q2,qx1Q2+q3x+q2qx+1Q+qx1q2

(5.1)

 

• 

Desingularize computes a multiple of a given q-difference operator with fewer singularities.

MQDifferenceEquations:-DesingularizeL,Q,x,q

M:=Q2+q21Q+q2

(5.2)

For details, see Q-Difference Equation in Maple 18.

RootOf

There have been several ease of use enhancements made to the function RootOf, including with numeric, interval, and index selectors.

allvaluesRootOfx^2x1, 1/2

125+12,12125

(6.1)

RootOfx^2x1, 1..2

RootOf_Z2_Z1,1..2

(6.2)

evalf

1.618033989

(6.3)

For more on improvements to RootOf in Maple 18, see the RootOf updates page.

See Also

What's New in Maple18