verify/expand
verify the equality of two objects when expanded
verify/normal
verify the equality of two objects when normalized
verify/simplify
verify the equality of two objects when simplified
verify/evala
verify the equality of two objects in algebraic number fields
Calling Sequence
Parameters
Description
Examples
verify(expr1, expr2, expand)
verify(expr1, expr2, 'expand'(opt1, opt2, ...))
verify(expr1, expr2, normal)
verify(expr1, expr2, 'normal'(expanded))
verify(expr1, expr2, simplify)
verify(expr1, expr2, 'simplify'(opt1, opt2, ...))
verify(expr1, expr2, evala)
verify(expr1, expr2, 'evala'(opt1, opt2, ...))
expr1, expr2
-
anything, assumed to be of type algebraic
opt1, opt2, ...
optional parameters passed to expand or simplify or evala
The verify(expr1, expr2, expand), verify(expr1, expr2, normal), verify(expr1, expr2, simplify), and verify(expr1, expr2, evala) calling sequences return true if the difference between the arguments expr1 and expr2 is zero after having applied the procedures expand, normal, simplify, and evala, respectively.
Any optional parameters are passed on as subsequent arguments to the appropriate procedures.
These verifications are symmetric.
Because expand, normal, simplify, and evala are Maple procedures, they must be enclosed in single quotes to prevent evaluation.
If expr1 and expr2 are of type relation, the verification is applied to each side of the relation.
If expr1 and expr2 are lists, the verification is applied element-wise. If the lists have differing lengths, then false is returned.
If either expr1 or expr2 is not of type algebraic, relation, or list, then false is returned.
a≔Array⁡1..3,1,2,x−12
a≔12x−12
b≔Array⁡1..3,1,2,x2−2⁢x+1
b≔12x2−2⁢x+1
verify⁡a,b,Array
false
verify⁡a,b,Array⁡expand
true
verify⁡f⁡x2−1f⁡x−1,f⁡x+1
verify⁡f⁡x2−1f⁡x−1,f⁡x+1,normal
verify⁡1x+xx+1,x+1+x2x2+x,expand
verify⁡1x+xx+1,x+1+x2x2+x,normal
verify⁡a,412+3,a,5,list
verify⁡a,412+3,a,5,list⁡normal
verify⁡a,412+3,a,5,list⁡simplify
verify⁡a,412+3,a,5,simplify
verify⁡abs⁡x,sqrt⁡x2,simplify
verify⁡abs⁡x,sqrt⁡x2,simplify⁡assume=real
verify⁡R=1−cos⁡x2,R=sin⁡x2,simplify
r1≔RootOf⁡4⁢_Z3−8⁢_Z2−7⁢_Z+3,index=2
r2≔RootOf⁡4⁢_Z3−8⁢_Z2−7⁢_Z+3,2.562..2.57
verify⁡r1,r2,evala
See Also
evala
expand
normal
simplify
verify
Download Help Document