ztrans
Z transform
Calling Sequence
Parameters
Description
Examples
ztrans(f, n, z)
f
-
expression
n
name
z
The function ztrans finds the Z transformation of f(n) with respect to z. Formally,
ztrans⁡f⁡n,n,z=∑n=0∞⁡f⁡nzn
ztrans recognizes and specially handles a large class of expressions, and only resorts to using the definition to calculate the transformation if the given expression has an unknown form. If the Z transform of the given expression cannot be found in a closed form, then the left-hand side of the formal definition is returned, rather than the right-hand side.
The functions referred to in the literature as Delta and Step may be simulated in this function as charfcn[0](...) and Heaviside(...), respectively.
ztrans⁡f⁡n+1,n,z
z⁢ztrans⁡f⁡n,n,z−f⁡0⁢z
ztrans⁡sin⁡π2⁢t,t,z
zz2+1
ztrans⁡3nn!,n,w
ⅇ3w
ztrans⁡β⁢5n⁢n2+3⁢n+1,n,z
β⁢z⁢z5+15⁢z5−13+3⁢z5⁢z5−12+z5⁢z5−1
ztrans⁡charfcn5⁡t⁢Ψ⁡t,t,w
2512−γw5
ztrans⁡n⁢Heaviside⁡n−3,n,z
3⁢z−2z2⁢z−12
ztrans⁡invztrans⁡f⁡z,z,n,n,z
f⁡z
See Also
charfcn
Heaviside
inttrans[laplace]
invztrans
rsolve
Download Help Document